

OVERVIEW AC SERVO DRIVES & MOTION CONTROL





A

## MINAS A5 series servo drives

Highly dynamic servo drives with state-of-the-art technology. Large power range (50W–15kW) combined with a lightweight and compact design. Innovative functions to suppress resonance frequencies and vibrations. Multiple control features such as pulse, analog, and network technology in real-time communication (100Mbit/s).



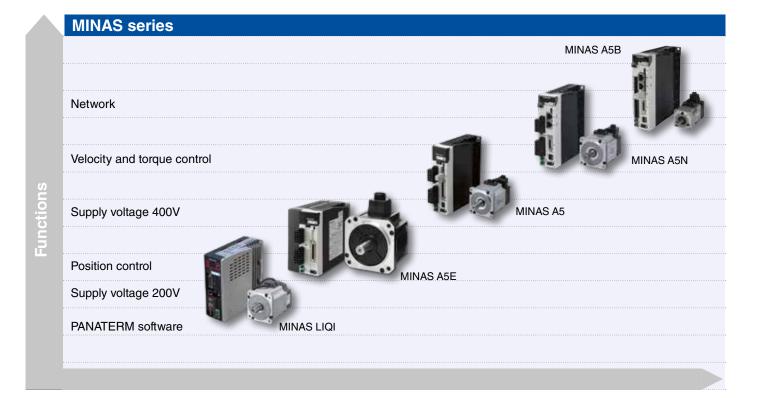
## Motion control libraries, configuration and programming software

PLC programming software Control FPWIN Pro (compliant with IEC 61131-3). The free configuration software PANA-TERM and M-SELECT support users in the system setup, thus shortening the time required for commissioning. In addition, you can download motion control libraries for free. With the libraries' predefined function blocks, it is easy to solve even complex positioning tasks.

## **FP series PLC**

The PLC comes already equipped with the hardware required for positioning tasks. FP0R, FP $\Sigma$  (Sigma), and FP-X are capable of controlling up to 4 axes independently. By using positioning units, the system can be expanded to control up to 10 axes. The FP7 can even control up to 64 axes. Add network technology in the shape of RTEX or EtherCAT positioning units, and the FP series allows you to control up to 256 axes with the real-time Ethernet bus.




### GT and HM500 series touch terminals

Touch terminals allow humans and machines to interact with each other. The machine's role therein is to display data, results, messages, etc. and to receive instructions and execute tasks assigned by people. Panasonic's new touch terminals are ideally suited for these tasks. They are optimally suited both for factory and building automation. Panasonic HMIs cover a wide spectrum, ranging in size from a compact 3" touch panel to a color 13" display for sophisticated applications.

## Contents

| Comprehensive MC solutions by Pa | anasonic2 |
|----------------------------------|-----------|
| Overview                         | 3         |
| Applications                     | 4         |
| MINAS A5 series                  | 6-28      |
| MINAS LIQI series                | 29-32     |
| Cables                           | 33-35     |
|                                  |           |

| Accessories              | 36-37 |  |
|--------------------------|-------|--|
| Programmable controllers | 38    |  |
| Positioning functions    | 39-43 |  |
| Software                 | 44-49 |  |
| Memo                     | 50    |  |
| Other Panasonic products | 51    |  |
|                          |       |  |



| MINAS s       | series             | LIQI            | A5E                         | A5                                     | A5N       | A5B |  |  |  |
|---------------|--------------------|-----------------|-----------------------------|----------------------------------------|-----------|-----|--|--|--|
| Rated power   |                    | 50–1000W        | 50–5000W                    |                                        | 50–15000W | ,   |  |  |  |
| Supply        | up to 1500W        | 1-phase 200V AC |                             | 1-/3-phase                             | e 200V AC |     |  |  |  |
| voltage       | from 1000W         | -               |                             | 3-phase                                | 400V AC   |     |  |  |  |
| Bandwidth (v  | velocity response) | 1000Hz          |                             | 2000Hz                                 |           |     |  |  |  |
| Rated rotatio | nal speed          | 1500–3000 (rpm) |                             |                                        |           |     |  |  |  |
| Max. rotation | al speed           | 2000–6000 (rpm) |                             |                                        |           |     |  |  |  |
| Rated torque  | •                  | 0.16-3.2Nm      | 0.16–23.9Nm 0.16–99.5Nm     |                                        |           |     |  |  |  |
| Peak torque   |                    | 0.48–9.5Nm      | 0.48–71.6Nm                 | 0.48–71.6Nm 0.48–224Nm                 |           |     |  |  |  |
| Control funct | ions               | Positior        | n control                   | Position, velocity, and torque control |           |     |  |  |  |
| IP degree of  | protection (motor) | IP65            | IP67                        |                                        |           |     |  |  |  |
| Control input |                    | Pu              | Pulse Pulse, analog Network |                                        |           |     |  |  |  |

With its power range of 50 to 15,000W, Panasonic servo drives are ideally suited to solve both small (1 or 2 axes) and complex tasks (up to 256 axes) easily and quickly.

The following industries make use of servo drives: packaging, textile, plastics, wood, paper, metal and mounting, and processing.

### **Application examples:**

#### **Packaging machine**

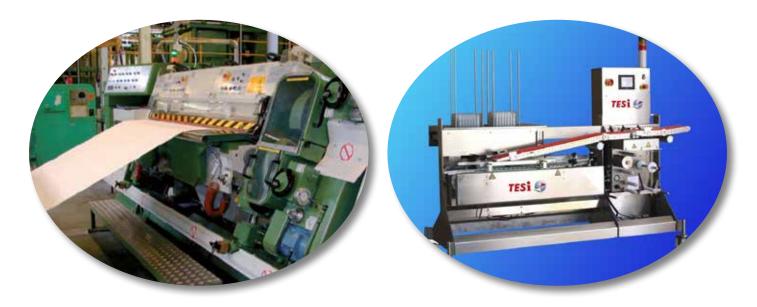
A complete solution with PLC, touch terminal, and servo drives from Panasonic. Our compact drives offer a great advantage over competitor's products for packaging machines (labeling, packing, etc.).



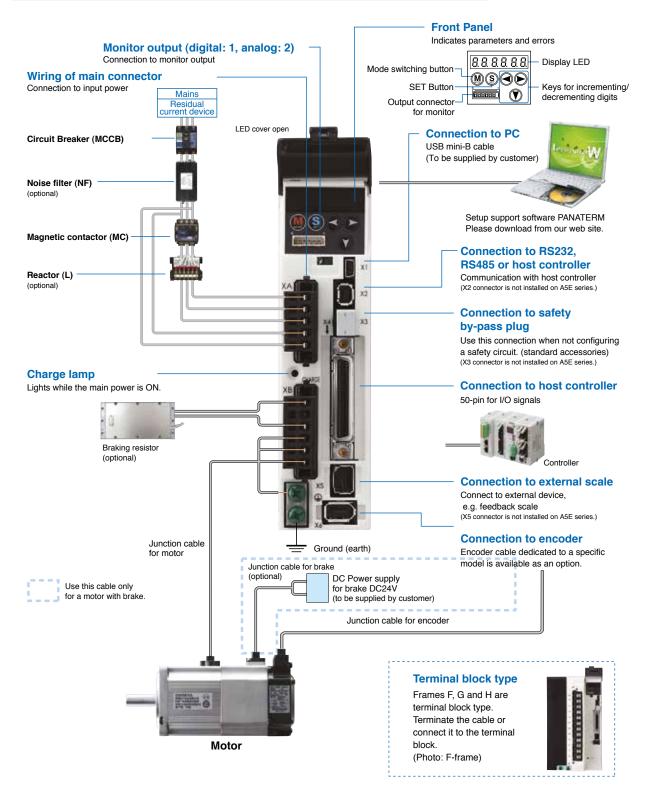
#### **Cutting machine**

The FP2SH PLC controls the positioning so that the machine can cut at high speed and with an accuracy of 10 micrometers.

#### X-Y table


Positioning XY axes to apply adhesive.

One FP $\Sigma$  (Sigma) controls 2 servo drives as well as the adhesive-dispensing device according to the predefined profile.




#### Food processing machine

This solution from Panasonic includes an FP0R PLC, a GT32 touch terminal, a MINAS A5 driver, and a VF0 inverter. To make burgers, the movement of three axes has to be precisely synchronized.

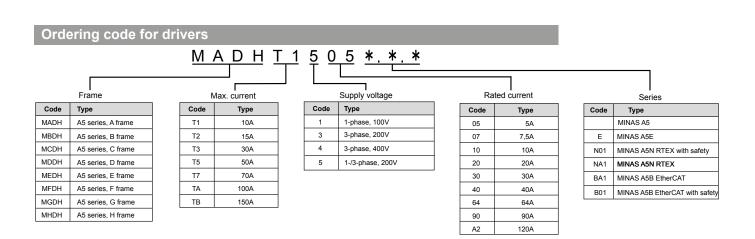


## Connector type (100/200V: A to E frame)



## **MINAS A5 series**

## **MINAS A5 series**


The MINAS A5 series: Panasonic's standard AC servo drives.

The highly dynamic servo drives can be controlled by pulses or analog signals.

- Ultrafast response frequency: 2kHz bandwidth (velocity response)
- · Pulse input and output with up to 4MHz
- · Real-time autotuning function during operation
- 4 notch filters: manual/automatic
- 4 damping filters: manual/automatic
- PANATERM: Free software for configuration and motion simulation
- Conforms to the following safety standards: EN954-1(CAT3), ISO13849-1(PLd), EN61508(SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1
- Full-closed control



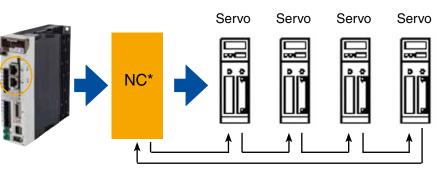
| Rated power | Driver MINAS A5E 230V AC | Drivers MINAS A5; A5N; A5B<br>230V AC | Drivers MINAS A5; A5N; A5B<br>3x380V AC | Frame |
|-------------|--------------------------|---------------------------------------|-----------------------------------------|-------|
| 50/100W     | MADHT1505E               | MADHT1505***                          |                                         | Δ     |
| 200W        | MADHT1507E               | MADHT1507***                          |                                         | A     |
| 400W        | MBDHT2510E               | MBDHT2510***                          |                                         | В     |
| 750W        | MCDHT3520E               | MCDHT3520***                          |                                         | С     |
| 1kW         |                          | MDDHT5540***                          | MDDHT2412***                            | D     |
| 1.5kW       |                          | MDDH15540                             | MDDHT3420***                            | D     |
| 2kW         |                          |                                       | MEDHT4430***                            | E     |
| 3kW         | _                        |                                       | MFDHT5440***                            | F     |
| 4/5kW       |                          | _                                     | MFDHTA464***                            | r     |
| 7.5kW       |                          |                                       | MGDHTB4A2***                            | G     |
| 11/15kW     |                          |                                       | MHDHTB4A2***                            | Н     |



## **MINAS A5 network series**

Thanks to its high transmission speed and sampling rate, RTEX (Realtime Express), the fast, real-time Ethernet bus for automation, is particularly well suited for highly dynamic single and multiple axes positioning tasks. The communication between master and slaves happens in real-time.

**EtherCAT** (Ethernet for Control Automation Technology) offers similar excellent features like RTEX. However, EtherCAT is an open, standardized field bus that allows an open data exchange with all other servo drivers which have an EtherCAT interface.








| Features                                                                                                                                        | MINAS A5N          | MINAS A5B               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| Real-time communication 100Mbit/s                                                                                                               | RTEX protocol      | CAN over EtherCAT (CoE) |
| Supports position, velocity and torque control                                                                                                  | $\checkmark$       | ✓                       |
| Manual and automatic vibration suppression (adjustable in the driver)                                                                           | $\checkmark$       | ✓                       |
| Full control of                                                                                                                                 | up to 32 axes      | up to 64 axes           |
| Conforms to the following safety standards:<br>EN954-1(CAT3), ISO13849-1 (PLd), EN61508(SIL2),<br>EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1 | $\checkmark$       | ✓                       |
| Easy wiring using standard Ethernet cables<br>(CAT5e, up to 100m between units)                                                                 | $\checkmark$       | ✓                       |
| Positioning units for                                                                                                                           | FPΣ (Sigma), FP2SH | FP7                     |

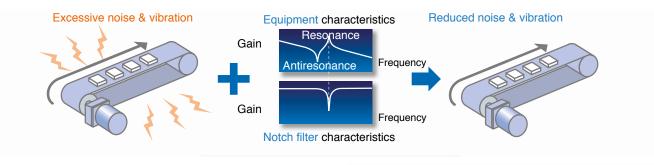
### Easy mounting and reliable connections thanks to loop wiring





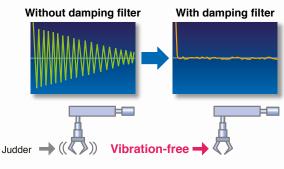
\* NC: Numerical control (servo driver, positioning unit)

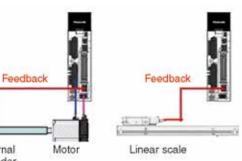
## External encoders for full-closed control


Using an external encoder ensures high-precision positioning. For most applications, positioning with a motor encoder works fine. However, mechanical parts may cause slight deviations that the motor encoder cannot control. This is where an external encoder or a linear scale is needed. They help to compensate even small inaccuracies so that positioning practically always works correctly.

### Real-time auto-gain tuning

If this function is activated, tuning is performed automatically upon completion of several operations. When the response frequency has been adjusted, simple tuning results in a change to a single parameter value. Fine-tuning can be carried out by activating the gain adjustment mode in the setup software. The automatic vibration suppression function minimizes damage to the equipment. Additional mode and stiffness parameters enable easy response frequency optimization for specific machine types such as high-friction, belt-driven machines or machines with low-friction ball screw drives.


## Manual and automatic notch filters


Highly sensitive notch filters eliminate the need to monitor troublesome vibration frequencies. By automatically detecting vibration and defining a simple auto-gain setting, the MINAS A5's filters greatly reduce interference and vibration caused by equipment resonance. For depth adjustment, the A5 features a total of four notch filters, two of which share the auto setup. The setup frequency range for the filters is 50–5000Hz.



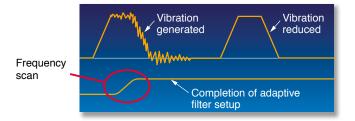
## Manual and automatic damping filters

Damping filters that can be set automatically suppress the equipment's resonance and the natural vibration frequency component of the command input, which greatly reduces axis vibration at machine stoppage. The number of damping filters has been increased to four from the conventional two; of these four, two are for simultaneous use. The available frequency range has been extended significantly from 1 to 200Hz.





Belt drive


External

encoder

#### Ball screw drive







### Low cogging torque

Compared to competitor products, the MINAS A5 achieves the industry's most stable speed and lowest cogging torque by minimizing pulse width. This was made possible by a new design featuring a 10-pole rotor for the motor as well as magnetic field analysis. With the reduction in torque variation, the MINAS A5's speed, stability and positioning behavior have been markedly improved.



PANATERM reads response frequency data from the actual machine. A simplified simulation function allows you to check gain and filter effects without adjusting the actual equipment.

### 3-step control setting

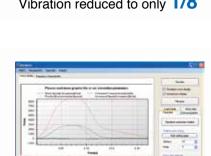
Control parameters are activated according to the operating condition (deceleration during operation, stopping during fast positioning, standstill). By controlling the motion it is possible to perform even faster positioning with less vibration.

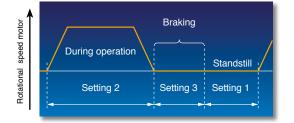
### Integrated safety function (STO)

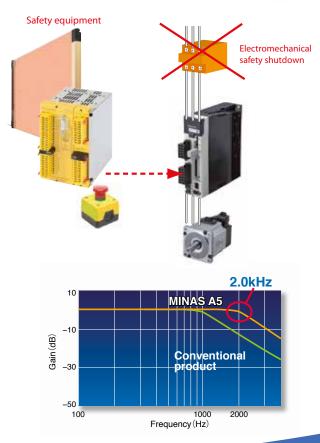
To insulate the motor power, MINAS A5 servo drivers feature independent, hardware-based, redundant circuits. Magnetic breakers prescribed for machines by the Low-Voltage Directive are thereby unnecessary. This saves both space and money. The servo driver's safety functions fulfill the following safety standards: EN954-1(CAT3), ISO13849-1 (PLd), EN61508 (SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1.

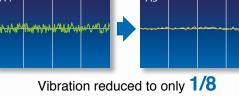
Dynamic brake:

The dynamic brake is activated in case of an emergency, i.e. when:


- The main switch has been turned off,
- The input SRV-OFF is not active,
- One of the protective functions is activated or,
- The input INH is not active.


#### **Torque limit**


Torque limit is an indispensable function for torque-controlled applications or generally for protection against mechanical damages.


Possible settings:

- As specified by analog value,
- Different values for positive and negative direction,
- 2 digital input points for fixed values.

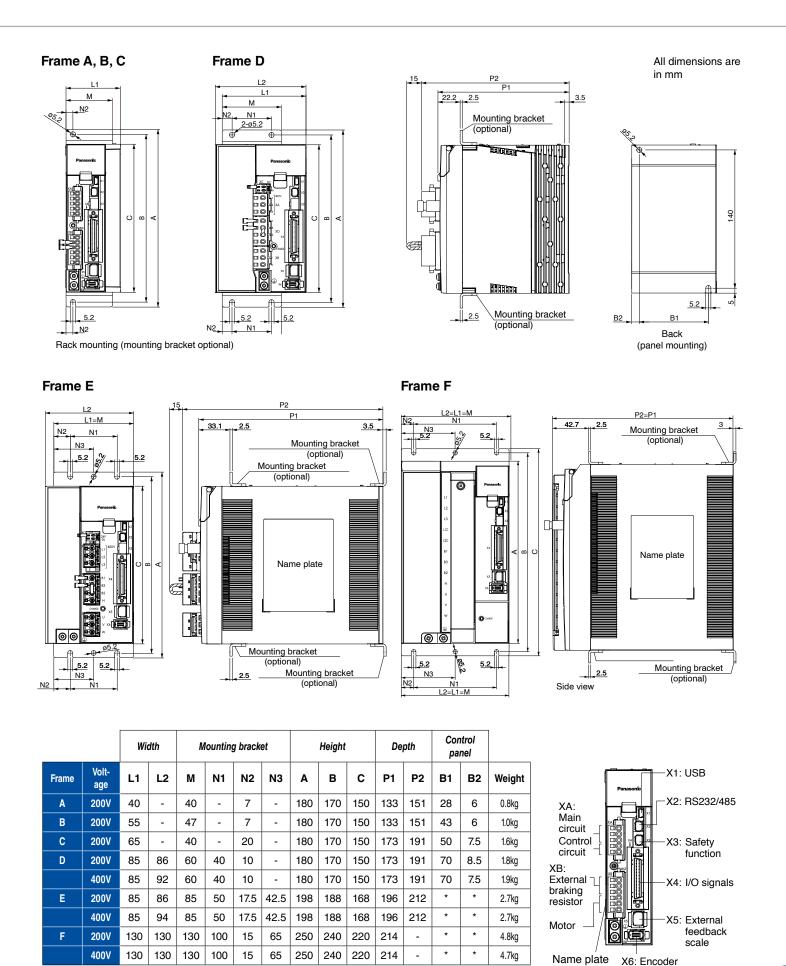




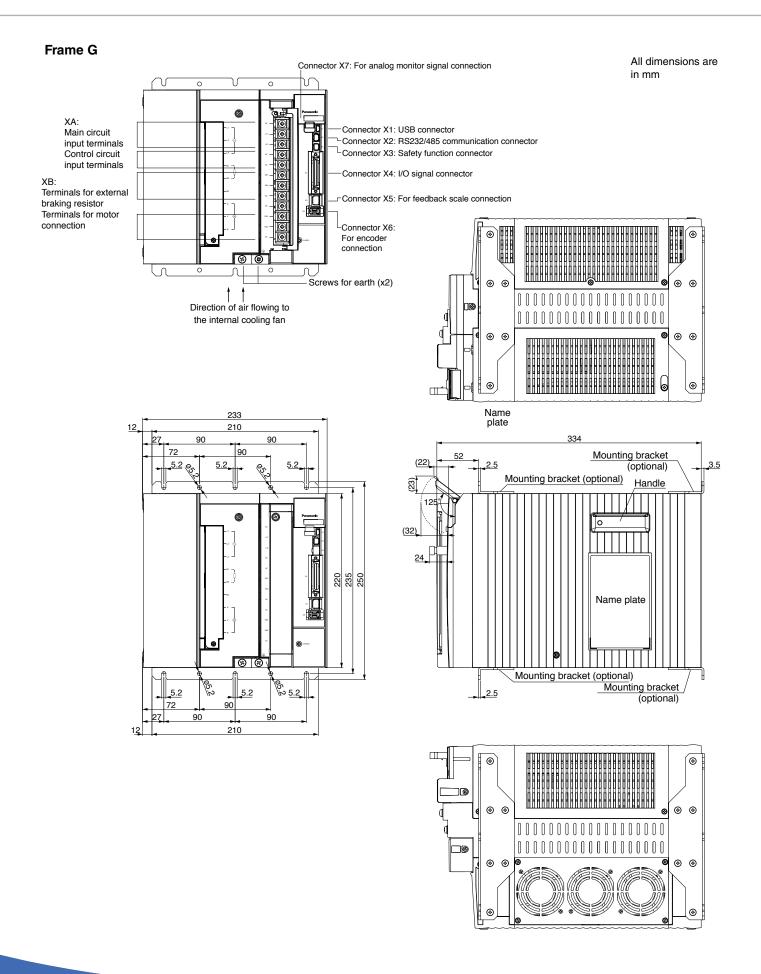


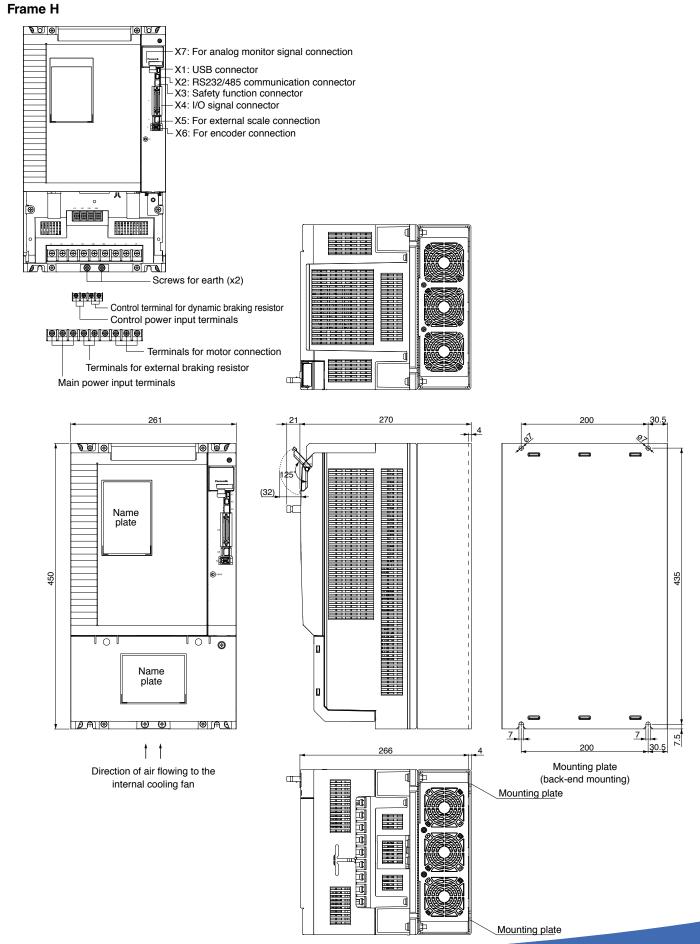


|                |                  |                   |                                         |                          |               |                              |         | Over                                     | view MINAS   | S A5 motors a                            | nd accessori                        | es                    |                                   |                                       |                  |  |  |           |
|----------------|------------------|-------------------|-----------------------------------------|--------------------------|---------------|------------------------------|---------|------------------------------------------|--------------|------------------------------------------|-------------------------------------|-----------------------|-----------------------------------|---------------------------------------|------------------|--|--|-----------|
|                |                  |                   |                                         | Motor                    |               |                              |         |                                          | Driver       |                                          | Cal                                 | pel                   |                                   | Filter                                | Braking resistor |  |  |           |
|                | Rated power<br>W | Max. torque<br>Nm | Rated rotational<br>speed (max.)<br>rpm | Motor type               | Holding brake | IP67 degree of<br>protection | r shaft | Encoder                                  | Туре         | Motor                                    | cable                               | Encoder               | cable                             | EMC filter                            | Туре             |  |  |           |
|                | Rate             | Max               | Rated<br>spee                           | Mot                      | Holdin        | IP67 o                       | Key     | Ë                                        |              | For motors with-<br>out holding<br>brake | For motors with<br>holding<br>brake | 20 bit<br>incremental | 17 bit absolute                   | E E E E E E E E E E E E E E E E E E E |                  |  |  |           |
|                |                  |                   | 1                                       |                          | r             | -                            |         | 1                                        | Low          | inertia 200V AC cl                       | ass                                 |                       | 1                                 | 1                                     | 1                |  |  |           |
|                | 50               | 0,16<br>(0,48)    | 3000<br>(6000)                          | MSME5AZG1U<br>MSME5AZG1V | x             | X                            | x<br>x  | 1                                        |              |                                          | <br>MFMCB0DD0PJT*                   |                       |                                   |                                       |                  |  |  |           |
|                | 100              | 0,32              | 3000                                    | MSME012G1U               |               | x                            | x       | 5                                        | MADHT1505    |                                          |                                     |                       |                                   |                                       | BWD250100        |  |  |           |
|                | 100              | (0,95)<br>0,64    | (6000)<br>3000                          | MSME012G1V<br>MSME022G1U | x             | x<br>x                       | x<br>x  | code                                     |              | -                                        | MFMCB0DD0PJT*                       |                       | MFECA0000GJE                      | FN2080-6-06                           |                  |  |  |           |
|                | 200              | (1,91)            | (6000)                                  | MSME022G1V<br>MSME022G1V | x             | x                            | x       | al en                                    | MADHT1507    | MFMCA000WJD                              | MFMCB0DD0PJT*                       | MFECA000WJD           | (with battery box)                | or<br>FS21238607                      |                  |  |  |           |
|                | 400              | 1,3<br>(3,8)      | 3000<br>(6000)                          | MSME042G1U               |               | x                            | x       | 1048576ppr                               | MBDHT2510    |                                          |                                     |                       |                                   | 1 02 1200001                          | BWD250072        |  |  |           |
|                | 750              | 2,4               | 3000                                    | MSME042G1V<br>MSME082G1U | x             | x<br>x                       | x<br>x  | 20-bit incremental encoder<br>1048576ppr |              |                                          | MFMCB0DD0PJT*                       |                       |                                   |                                       |                  |  |  |           |
|                | 750              | (7,1)             | (6000)                                  | MSME082G1V               | x             | x                            | x       | -bit i                                   | MCDHT3520    |                                          | MFMCB000PJT*                        |                       |                                   |                                       |                  |  |  |           |
| rtia           | 1000             | 3,18<br>(9,55)    | 3000<br>(5000)                          | MSME102G1G<br>MSME102G1H | x             | x<br>x                       | x<br>x  | 50                                       |              | MFMCD0002GCD                             | MFMCA0002HCD                        |                       | MFECA000GTE                       |                                       |                  |  |  |           |
| Low inertia    | 1500             | 4,77              | 3000                                    | MSME152G1G               |               | x                            | х       | 1                                        | MDDHT5540    | MFMCD002GCD                              |                                     | MFECA000GTD           | (with battery box)                | FN2080-10-06                          | BWD500035        |  |  |           |
| Ň              |                  | (14,3)            | (5000)                                  | MSME152G1H               | x             | x                            | x       |                                          | 10           | <br>v inertia 400V AC cla                | MFMCA0002HCD                        |                       |                                   |                                       |                  |  |  |           |
| -              | 1000             | 3,18              | 3000                                    | MSME104G1G               |               | x                            | x       |                                          |              | MFMCD0002GCD                             |                                     |                       |                                   |                                       |                  |  |  |           |
|                |                  | (9,55)<br>4,77    | (5000)<br>3000                          | MSME104G1H<br>MSME154G1G | x             | x<br>x                       | x<br>x  | ē                                        | MDDHT3420    | <br>MFMCD0□□2GCD                         | MFMCE002HCD                         |                       |                                   |                                       | BWD500150        |  |  |           |
|                | 1500             | (13,3)            | (5000)                                  | MSME154G1H               | x             | x                            | x       | 20-bit incremental encoder<br>1048576ppr |              |                                          |                                     |                       |                                   | FN3268-7-44                           |                  |  |  |           |
|                | 2000             | 6,37<br>(19,1)    | 3000<br>(5000)                          | MSME204G1G               |               | x                            | x       | sppr                                     | MEDHT4430    | MFMCD002GCD                              |                                     |                       |                                   | FIN3200-7-44                          | BWD500100        |  |  |           |
|                |                  | 9,55              | 3000                                    | MSME204G1H<br>MSME304G1G | x             | x<br>x                       | x<br>x  | icremental e<br>1048576ppr               |              | <br>MFMCA0□□2GCT                         | MFMCE002HCD                         | MFECA000GTD           | MFECA000GTE<br>(with battery box) |                                       |                  |  |  |           |
|                | 3000             | (28,6)            | (5000)                                  | MSME304G1H               | x             | x                            | x       | incre<br>104                             | MFDHT5440    | -                                        | MFMCA002HCT                         |                       |                                   |                                       |                  |  |  | -         |
|                | 4000             | 12,7<br>(38,2)    | 3000<br>(4500)                          | MSME404G1G<br>MSME404G1H | x             | x<br>x                       | X<br>X  | 0-bit                                    |              | MFMCA0002GCT                             | <br>MFMCA0DD2HCT                    |                       |                                   |                                       |                  |  |  | BWD600047 |
|                | 5000             | 15,9              | 3000                                    | MSME504G1G               | ~             | x                            | x       | Ň                                        | MFDHTA464    | MFMCA002GCT                              |                                     |                       |                                   | FN3268-16-44                          |                  |  |  |           |
|                | 5000             | (47,7)            | (4500)                                  | MSME504G1H               | x             | x                            | x       |                                          | Madi         |                                          |                                     |                       |                                   |                                       |                  |  |  |           |
|                | 1000             | 4,7               | 2000                                    | MDME102G1G               | 1             | x                            | x       | É                                        | 1            | um inertia 200V AC o<br>MFMCD0002GCD     |                                     |                       |                                   |                                       |                  |  |  |           |
|                | 1000             | (14,3)            | (3000)                                  | MDME102G1H               | x             | x                            | х       | 20-bit increm.<br>encoder                | MDDHT3530    |                                          | MFMCA002HCD                         | MFECA000GTD           | MFECA000GTE                       | FN2080-10-06                          | BWD500035        |  |  |           |
|                | 1500             | 7,16<br>(21,5)    | 2000<br>(3000)                          | MDME152G1G<br>MDME152G1H | x             | x<br>x                       | x<br>x  | 20-bit<br>en                             | MDDHT5540    | MFMCD0002GCD                             | <br>MFMCA0002HCD                    |                       | (mit Batteriebox)                 |                                       |                  |  |  |           |
|                |                  |                   | , ,                                     |                          |               | 1                            | 1       | 1                                        | Medi         | um inertia 400V AC o                     |                                     |                       | ,<br>,                            | 1                                     | 1                |  |  |           |
| σ,             | 2000             | 9,55<br>(28,6)    | 2000 (3000)                             | MDME204G1G<br>MDME204G1H | x             | x<br>x                       | x<br>x  | -                                        | MEDHT4430    | MFMCD0002GCD                             | <br>MFMCE0□□2HCD                    |                       |                                   |                                       | BWD500100        |  |  |           |
| erti           | 3000             | 14,3              | 2000                                    | MDME304G1G               | ~             | x                            | x       |                                          | MFDHT5440    | MFMCA002GCT                              |                                     |                       |                                   | FN3268-7-44                           |                  |  |  |           |
| Medium inertia | 0000             | (43,0)<br>19,1    | (3000) 2000                             | MDME304G1H<br>MDME404G1G | x             | x<br>x                       | x<br>x  | cremental encoder<br>1048576ppr          | WI DI113440  | <br>MFMCA0□□2GCT                         | MFMCA0002HCT                        |                       |                                   |                                       |                  |  |  |           |
| liun           | 4000             | (57,3)            | (3000)                                  | MDME404G1H               | x             | x                            | x       | al en                                    | MFDHTA464    |                                          |                                     |                       |                                   | FN3268-16-44                          | BWD600047        |  |  |           |
| led            | 5000             | 23,9              | 2000                                    | MDME504G1G               |               | x                            | x       | icremental ∈<br>1048576ppr               | MFDH IA404   | MFMCA002GCT                              |                                     | MFECA000GTD           | MFECA0DOGTE<br>(with battery box) | FIN3200-10-44                         |                  |  |  |           |
| <              |                  | (71,6)<br>47,8    | (3000)<br>1500                          | MDME504G1H<br>MDME754G1G | x             | x<br>x                       | X<br>X  |                                          |              |                                          | MFMCA002HCT                         |                       | (with battery box)                |                                       | DIMERSION        |  |  |           |
|                | 7500             | (119)             | (2000)                                  | MDME754G1H               | x             | x                            | x       | 20-bit ir                                | MGDHTB4A2    | -                                        |                                     |                       |                                   |                                       | BWD600027        |  |  |           |
|                | 11000            | 70<br>(175)       | 1500<br>(2000)                          | MDMEC14G1G<br>MDMEC14G1H | x             | x<br>x                       | X<br>X  | 50                                       |              | Use<br>DV0PM20056                        | Use<br>DV0PM20057                   |                       |                                   | FN3258-30-33                          | BWD              |  |  |           |
|                | 15000            | 95,5              | 1500                                    | MDMEC54G1G               |               | x                            | x       | 1                                        | MHDHTB4A2    |                                          |                                     |                       |                                   |                                       | 600027K02LV      |  |  |           |
|                | 10000            | (224)             | (2000)                                  | MDMEC54G1H               | x             | x                            | x       |                                          | Llia         | h inertia 200V AC cla                    |                                     |                       |                                   |                                       |                  |  |  |           |
|                |                  | 0,64              | 3000                                    | MHMD022G1U               |               | IP65                         | x       |                                          | 1            |                                          |                                     |                       |                                   |                                       |                  |  |  |           |
|                | 200              | (1,91)            | (5000)                                  | MHMD022G1V               | x             | IP65                         | х       | 20-bit increm.<br>encoder                | MADHT1507    |                                          | MFMCB0DD0GET*                       |                       |                                   | FN2080-6-06                           |                  |  |  |           |
|                | 400              | 1,3<br>(3,8)      | 3000<br>(5000)                          | MHMD042G1U<br>MHMD042G1V | x             | IP65<br>IP65                 | x<br>x  | it inc                                   | MBDHT2510    | MFMCA0000EEL                             | <br>MFMCB0DD0GET*                   | MFECA000EAM           | MFECA0 0EAE<br>(with battery box) | or                                    | BWD250072        |  |  |           |
|                | 750              | 2,4               | 3000                                    | MHMD082G1U               |               | IP65                         | x       | 20-b<br>er                               | MCDHT3520    |                                          |                                     |                       | , , , ,                           | FS21238607                            |                  |  |  |           |
|                | 750              | (7,1)             | (4500)                                  | MHMD082G1V               | x             | IP65                         | x       |                                          |              | h inertia 400V AC cla                    | MFMCB0DD0GET*                       |                       | ļ                                 |                                       |                  |  |  |           |
| _              | 1000             | 4,77              | 2000                                    | MHME104G1G               |               | x                            | x       |                                          | MDDHT2412    | MFMCD0002GCD                             |                                     |                       |                                   |                                       |                  |  |  |           |
| High inertia   | 1000             | (14,3)            | (3000)                                  | MHME104G1H               | x             | x                            | x       |                                          |              |                                          | MFMCE002HCD                         |                       |                                   |                                       | BWD500150        |  |  |           |
| ine            | 1500             | 7,16<br>(21,5)    | 2000<br>(3000)                          | MHME154G1G<br>MHME154G1H | x             | x<br>x                       | x<br>x  | der                                      | MDDHT3420    | MFMCD002GCD                              | <br>MFMCE0□□2HCD                    |                       |                                   |                                       |                  |  |  |           |
| igh            | 2000             | 9,55              | 2000                                    | MHME204G1G               |               | x                            | х       | encode                                   | MEDHT4430    | MFMCE002GCD                              |                                     |                       |                                   | FN3268-7-44                           | BWD500100        |  |  |           |
| I              |                  | (28,6)<br>14,3    | (3000) 2000                             | MHME204G1H<br>MHME304G1G | x             | x<br>x                       | x<br>x  | incremental er<br>1048576ppr             |              | MFMCA0002GCT                             | MFMCE002HCD                         |                       | MFECA000GTE                       |                                       |                  |  |  |           |
|                | 3000             | (43)              | (3000)                                  | MHME304G1H               | x             | x                            | х       | 'eme<br>4857                             | MFDHT5440    | -                                        | MFMCA0002HCT                        | MFECA0 0GTD           | (with battery box)                |                                       |                  |  |  |           |
|                | 4000             | 19,1<br>(57,3)    | 2000<br>(3000)                          | MHME404G1G<br>MHME404G1H | x             | x<br>x                       | x       | 10<br>10                                 |              | MFMCA0002GCT                             | <br>MFMCA0□□2HCT                    |                       |                                   | BWD600047                             |                  |  |  |           |
|                | 5000             | 23,9              | 2000                                    | MHME404G1H<br>MHME504G1G | ×             | x                            | x<br>x  | 20-bit                                   | MFDHTA464    | <br>MFMCA0DD2GCT                         |                                     |                       |                                   |                                       |                  |  |  |           |
|                | 5000             | (71,6)            | (3000)                                  | MHME504G1H               | x             | x                            | х       |                                          |              | -                                        | MFMCA0002HCT                        |                       |                                   | ENG                                   |                  |  |  |           |
|                | 7500             | 47,8<br>(119)     | 1500<br>(3000)                          | MHME754G1G<br>MHME754G1H | x             | X<br>X                       | x<br>x  | 1                                        | MGDHTB4A2    | Use<br>DV0PM20056                        | Use<br>DV0PM20057                   |                       |                                   | FN3258-<br>30-33                      | BWD600027        |  |  |           |
|                |                  |                   |                                         |                          |               |                              |         | For m                                    | otors with a | holding brake                            | < 1kW you ne                        | ed two cables         | :<br>one for the i                | motor. one f                          | or the brake     |  |  |           |


10 = 10m

| _   |                         |                 |                | Frame                                                                  | MINAS A5E                                                                                | MINAS A5, A5N, A5B                                                                                                                                                                                                                             |
|-----|-------------------------|-----------------|----------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                         | Main circuit    |                | A, B, C, D                                                             | 1-phase, 3-phase, 200–24(                                                                | 0V (+10%, -15%), 50/60Hz                                                                                                                                                                                                                       |
|     |                         | Control         | 200V           | A, B, C, D                                                             | 1-phase, 200–240V (+                                                                     | 10%, -15%), 50/60Hz                                                                                                                                                                                                                            |
|     | Input power             | circuit         |                | E, F                                                                   | 1-phase, 200-230V (+                                                                     | 10%, -15%), 50/60Hz                                                                                                                                                                                                                            |
|     | mput power              | Main circuit    | 400V           | D, E, F,<br>G, H                                                       | -                                                                                        | 3-phase, 380–480V (+10%, -15%), 50/60Hz                                                                                                                                                                                                        |
|     |                         | Control circuit | 40             | D, E, F,<br>G, H                                                       | -                                                                                        | 24V DC (±15%)                                                                                                                                                                                                                                  |
|     |                         | Те              | mpera          | ature                                                                  | 0–50°C, storage temperature: -20 to +65°C<br>(max. temperature 80°C for 72h)             | 0-55°C, storage temperature: -20 to +65°C<br>(max. temperature 80°C for 72h)                                                                                                                                                                   |
|     | Operating<br>conditions | Amb             | ient h         | umidity                                                                | Operation and storage: 20-                                                               | 85% RH (non-condensing)                                                                                                                                                                                                                        |
|     | conditions              |                 | Altitud        | de                                                                     | Max. 1000m al                                                                            | bove sea level                                                                                                                                                                                                                                 |
|     |                         | Ň               | /ibrati        | on                                                                     | Max. 5,88m/s <sup>2</sup> , 10-60Hz (no contin                                           | uous use at resonance frequency)                                                                                                                                                                                                               |
|     | Control method          |                 |                |                                                                        | IGBT sinus                                                                               | oidal PWM                                                                                                                                                                                                                                      |
|     | Freedor                 | Increm          | ental          | (default)                                                              | 20-bit increme<br>(resolution 1                                                          |                                                                                                                                                                                                                                                |
| 0   | Encoder                 | Absolu          |                | te                                                                     | -                                                                                        | 17-bit absolute encoder on request (resolution 131072ppr)                                                                                                                                                                                      |
|     | ·                       | A/B phase       |                |                                                                        | -                                                                                        | Initialization signal differential input                                                                                                                                                                                                       |
|     | External feedba         | ack scale       | k scale Serial |                                                                        | -                                                                                        | Compatible with Mitutoyo (AT500,<br>ST771)                                                                                                                                                                                                     |
| 200 | Control signals         |                 | Input points   |                                                                        | 10                                                                                       | 0                                                                                                                                                                                                                                              |
|     | Control signals         |                 | Output points  |                                                                        | 6                                                                                        | ;                                                                                                                                                                                                                                              |
| å   | Analog/digital s        | ignals          | Input points   |                                                                        | -                                                                                        | 3<br>(16-bit A/D: 1, 12-bit A/D: 2)                                                                                                                                                                                                            |
|     |                         |                 | Οι             | utput points                                                           | 2                                                                                        | 2                                                                                                                                                                                                                                              |
|     | Pulse signals           |                 | In             | put points                                                             | 2 line                                                                                   | driver                                                                                                                                                                                                                                         |
|     | i uise signais          |                 | Οι             | utput points                                                           | 3 line driver (A, B and Z-phase                                                          | e), 1 open collector (Z-phase)                                                                                                                                                                                                                 |
|     |                         |                 |                | USB                                                                    | Interface t                                                                              | o PC, etc.                                                                                                                                                                                                                                     |
|     | Interface               |                 |                | RS232                                                                  | _                                                                                        | 1:1 communication                                                                                                                                                                                                                              |
|     |                         |                 |                | RS485                                                                  | -                                                                                        | 1:n communication with up to 31<br>axes via host (FP series PLC)                                                                                                                                                                               |
|     | Safety functions        | \$              |                |                                                                        | -                                                                                        | IEC61800-5-2 STO                                                                                                                                                                                                                               |
|     | Front panel             |                 |                | 5 buttons (MODE, SET, UP, DOWN, SHIFT), LED (6 digits), analog output  | 5 buttons (MODE, SET, UP, DOWN, SHIFT), LED<br>(6 digits), analog output, digital output |                                                                                                                                                                                                                                                |
|     | Braking resistor        |                 |                | A, B, G, and H frame: only<br>C–F frame: built-in braking resistor (e) |                                                                                          |                                                                                                                                                                                                                                                |
|     | Dynamic brake           |                 |                |                                                                        | A–G frame: built-in braking resistor (G frame: e<br>H frame: only extern                 |                                                                                                                                                                                                                                                |
|     | Control mode            |                 | introl mode    |                                                                        | Position control                                                                         | <ol> <li>7 different control modes 1. Position control,</li> <li>2. Velocity control, 3. Torque control, 4. Position/<br/>velocity control, 5. Position/torque control,</li> <li>6. Velocity/torque control, 7. Full-closed control</li> </ol> |


## **Driver functions**


|                  |                               |                                                           | MINAS A5E                  | MINAS A5, A5N, A5B                                                                                                                   |  |  |  |  |
|------------------|-------------------------------|-----------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                  | Control input                 |                                                           |                            | oulse inhibition, 3. Electronic gear switching, control switching                                                                    |  |  |  |  |
|                  | Control output                |                                                           | Positioning complete etc.  |                                                                                                                                      |  |  |  |  |
|                  |                               | Line driver A                                             | 500kpps                    |                                                                                                                                      |  |  |  |  |
| 0                |                               | Open collector                                            | 200kpps                    |                                                                                                                                      |  |  |  |  |
| Position control |                               | Line driver B                                             | 4Mpps                      |                                                                                                                                      |  |  |  |  |
| ŭ<br>L           | Pulse input                   | Signal format                                             | Differential input         | /square-wave pulse                                                                                                                   |  |  |  |  |
| sitic            |                               | Electronic gear                                           | Scaling of pulse frequence | y from 1/1000 to 1000 times                                                                                                          |  |  |  |  |
| 6                |                               | Smoothing filter                                          | Primary delay filter or    | r FIR filter, customizable                                                                                                           |  |  |  |  |
|                  | Analog input                  | Torque limit command                                      | -                          | Individual torque limit for positive and negative direction                                                                          |  |  |  |  |
|                  | Instantaneous speed           | lobserver                                                 | Ava                        | ailable                                                                                                                              |  |  |  |  |
|                  | Damping control               |                                                           | Ava                        | ailable                                                                                                                              |  |  |  |  |
|                  | Control input                 |                                                           | _                          | 13. Selection of internal velocities, 4. Zero speed clamp                                                                            |  |  |  |  |
|                  | Control output                |                                                           | _                          | Set velocity has been reached, etc.                                                                                                  |  |  |  |  |
|                  | Analog input                  | Velocity command                                          | _                          | Velocity and direction                                                                                                               |  |  |  |  |
| _                | Analog input                  | Torque limit command                                      | _                          | Available                                                                                                                            |  |  |  |  |
| ntro             | Velocity range                |                                                           | _                          | 1–6000rpm                                                                                                                            |  |  |  |  |
| 8                | Internal velocity com         | mand                                                      | _                          | 8 velocity set values                                                                                                                |  |  |  |  |
| Velocity control | Smooth start-up and           | stopping                                                  | -                          | Individual setup of acceleration and deceleration<br>from 0 to 10s/1000rpm<br>S-curve acceleration and deceleration ramp<br>possible |  |  |  |  |
|                  | Zero speed clamp              |                                                           | _                          | Available                                                                                                                            |  |  |  |  |
|                  | Instantaneous speed           | lobserver                                                 | _                          | Available                                                                                                                            |  |  |  |  |
|                  | Velocity control filter       |                                                           | _                          | Available                                                                                                                            |  |  |  |  |
| _                | Control input                 |                                                           | _                          | Zero speed clamp,<br>Torque direction command etc.                                                                                   |  |  |  |  |
| Torque control   | Control output                |                                                           | _                          | Set torque has been reached (at predefined velocity)                                                                                 |  |  |  |  |
| Torqu            |                               | Velocity command                                          | -                          | Set speed can be scaled                                                                                                              |  |  |  |  |
|                  | Analog input                  | Speed limit function                                      | _                          | Speed can be scaled                                                                                                                  |  |  |  |  |
|                  | Control input                 |                                                           | -                          | 1. Clear deviation counter, 2. Command pulse<br>inhibition, 3. Electronic gear switching,<br>4. Damping control switching            |  |  |  |  |
|                  | Control output                |                                                           | -                          | Full-closed control complete                                                                                                         |  |  |  |  |
| <u></u>          |                               | Line driver A                                             | _                          | 500kpps                                                                                                                              |  |  |  |  |
| ontr             |                               | Open collector                                            | _                          | 200kpps                                                                                                                              |  |  |  |  |
| o pe             |                               | Line driver B                                             | _                          | 4Mpps                                                                                                                                |  |  |  |  |
| lose             | Pulse input                   | Signal format                                             | _                          | Differential input/square-wave pulse                                                                                                 |  |  |  |  |
| Full-closed cont |                               | Electronic gear                                           | -                          | Scaling of pulse frequency from 1/1000 to 1000<br>times                                                                              |  |  |  |  |
|                  |                               | Smoothing filter                                          | -                          | Primary delay filter or FIR filter, customizable                                                                                     |  |  |  |  |
|                  | Analog input                  | Torque limit command                                      | -                          | Torque limit available                                                                                                               |  |  |  |  |
|                  | Setup range of division scale | on/multiplication of feedback                             | _                          | From 1/40 to 160 times                                                                                                               |  |  |  |  |
|                  | Autotuning                    |                                                           |                            | o the vibration behavior of the mechanical parts es to the load                                                                      |  |  |  |  |
| Ires             | Division of encoder f         | eedback pulse                                             |                            | nal resolution of the encoder                                                                                                        |  |  |  |  |
| featu            |                               | Error messages causing                                    |                            | e, overspeed, overload, over-                                                                                                        |  |  |  |  |
| Other features   | Protective function           | switch-off<br>Error messages requiring<br>acknowledgement |                            | t, encoder error, etc.<br>d pulse division error, EEPROM error, etc.                                                                 |  |  |  |  |
|                  | Alarm history                 | acknowledgement                                           |                            | ed for reference                                                                                                                     |  |  |  |  |

## **Driver dimensions**



\* For the dimensions, please refer to the data sheet of the mounting bracket





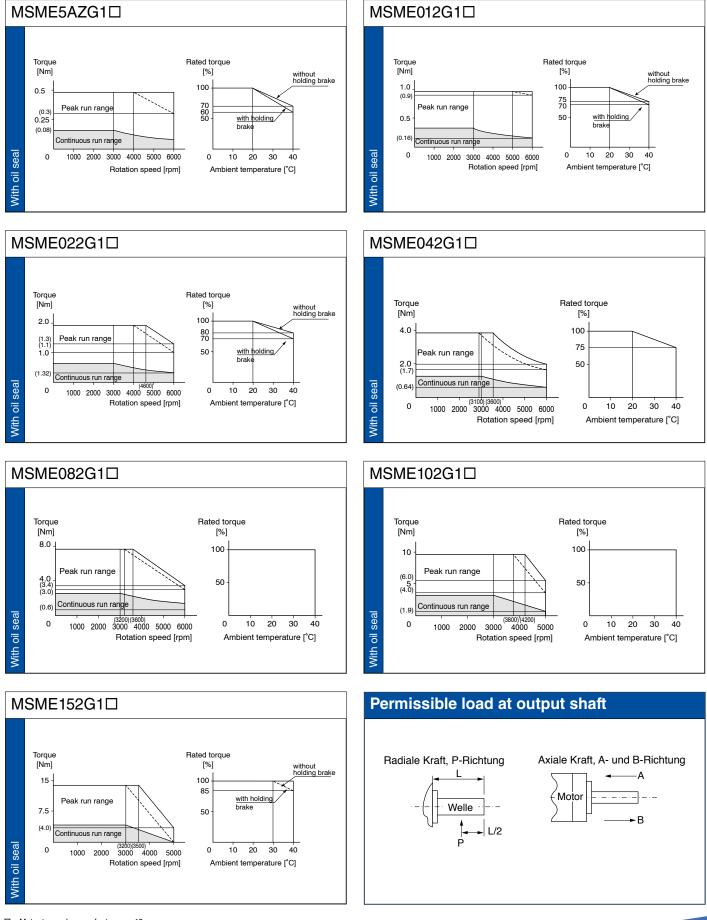
|                                                |                                |            | MSME (low i | inertia) 50–1500W   | 200V AC                                  |            |            |            |  |  |  |
|------------------------------------------------|--------------------------------|------------|-------------|---------------------|------------------------------------------|------------|------------|------------|--|--|--|
| Motor                                          |                                | MSME5AZG1D | MSME012G1D  | MSME022G1           | MSME042G1                                | MSME082G1D | MSME102G1D | MSME152G1D |  |  |  |
| Rated power W                                  |                                | 50         | 100         | 200                 | 400                                      | 750        | 1000       | 1500       |  |  |  |
| Required power kVA                             |                                |            | 0.5         |                     | 0.9                                      | 1.3        | 1.8        | 2.3        |  |  |  |
| Rated current A                                |                                | 1          |             | 1.5                 | 2.4                                      | 4.1        | 6.6        | 8.2        |  |  |  |
| Max. current A o-p                             |                                | 4          | .7          | 6.5                 | 10.2                                     | 17.4       | 28         | 35         |  |  |  |
| Rotational speed rpm                           | Rated rotational<br>speed      | 3000       |             |                     |                                          |            |            |            |  |  |  |
|                                                | Max. rotational speed          |            |             | 6000                |                                          |            | 5          | 000        |  |  |  |
| Weight kg                                      | Without holding<br>brake       | 0.31       | 0.46        | 0.78                | 1.2                                      | 2.3        | 3.5        | 4.4        |  |  |  |
|                                                | With holding brake             | 0.51       | 0.66        | 1.2                 | 1.6                                      | 3.1        | 4.5        | 5.4        |  |  |  |
| Torque Nm                                      | Nominal                        | 0.16       | 0.32        | 0.65                | 1.3                                      | 2.4        | 3.18       | 4.77       |  |  |  |
|                                                | Maximal                        | 0.48       | 0.95        | 1.91                | 3.8                                      | 7.1        | 9.55       | 14.3       |  |  |  |
| Encoder                                        |                                |            |             |                     | -bit incremental er<br>esolution: 104857 |            |            |            |  |  |  |
| Braking resistor                               | With internal<br>resistor      |            |             |                     | No limit                                 |            |            |            |  |  |  |
| frequency times/min                            | With external<br>resistor      | No limit   |             |                     |                                          |            |            |            |  |  |  |
| Moment of inertia of                           | Without holding<br>brake       | 0.025      | 0.051       | 0.14                | 0.26                                     | 0.87       | 2.03       | 2.84       |  |  |  |
| rotor (x10 <sup>-4</sup> kg · m <sup>2</sup> ) | With holding brake             | 0.027      | 0.054       | 0.16                | 0.28                                     | 0.97       | 2.35       | 3.17       |  |  |  |
| Recommended inertia<br>between load and roto   |                                |            | Мах         | Max. 20:1           | Max. 15:1                                |            |            |            |  |  |  |
|                                                | Temperature<br>(without frost) | 0-40°C     |             |                     |                                          |            |            |            |  |  |  |
| Operating                                      | Ambient humidity               |            |             | 20–8                | 35% RH (non-cond                         | densing)   |            |            |  |  |  |
| conditions                                     | Altitude                       |            |             | Ма                  | x. 1000m above se                        | ea level   |            |            |  |  |  |
|                                                | Vibration                      |            |             |                     | 49m/s <sup>2</sup>                       |            |            |            |  |  |  |
| · · ·                                          | ecifications (The hold         |            |             |                     |                                          |            |            |            |  |  |  |
| Static friction torque N                       | m                              |            | 0.29        |                     | . 1.27                                   | Min. 2.45  |            | n. 7.8     |  |  |  |
| Engaging time ms                               |                                |            | (. 35       |                     | x. 50                                    | Max. 70    |            | ix. 50     |  |  |  |
| Releasing time ms                              |                                |            | . 20        |                     | x. 15                                    | Max. 20    | Max. 15    |            |  |  |  |
| Excitation current A DO                        |                                | 0          | .3          | 0.                  | 36                                       | 0.42       | 0.81 ±10%  |            |  |  |  |
| Releasing voltage V D                          |                                |            |             |                     | Min. 1                                   |            |            | 1in. 2     |  |  |  |
| Excitation voltage V D                         | U                              | l          |             |                     | 24 ± 1.2%                                |            | 24         | ± 2.4%     |  |  |  |
|                                                |                                |            |             | ad and thrust at ou |                                          |            |            |            |  |  |  |
| During installation                            | Radial load,                   |            | 47          |                     | 92                                       | 686        |            | 980        |  |  |  |
| During operation                               | P-direction N*                 |            | 68.6        |                     | 45                                       | 392        |            | 190        |  |  |  |
| During installation                            | Axial thrust (push),           |            | 8           |                     | 47                                       | 294        |            | 588        |  |  |  |
| During operation                               | A-direction N*                 |            | 3.8         | 98                  |                                          |            | 147 196    |            |  |  |  |
| During installation                            | Axial thrust (pull),           |            | 7.6         |                     | 96                                       | 392        |            | 86         |  |  |  |
| During operation                               | B-direction N*                 | 58         | 3.8         | 9                   | 98                                       | 147        | 1 1        | 196        |  |  |  |

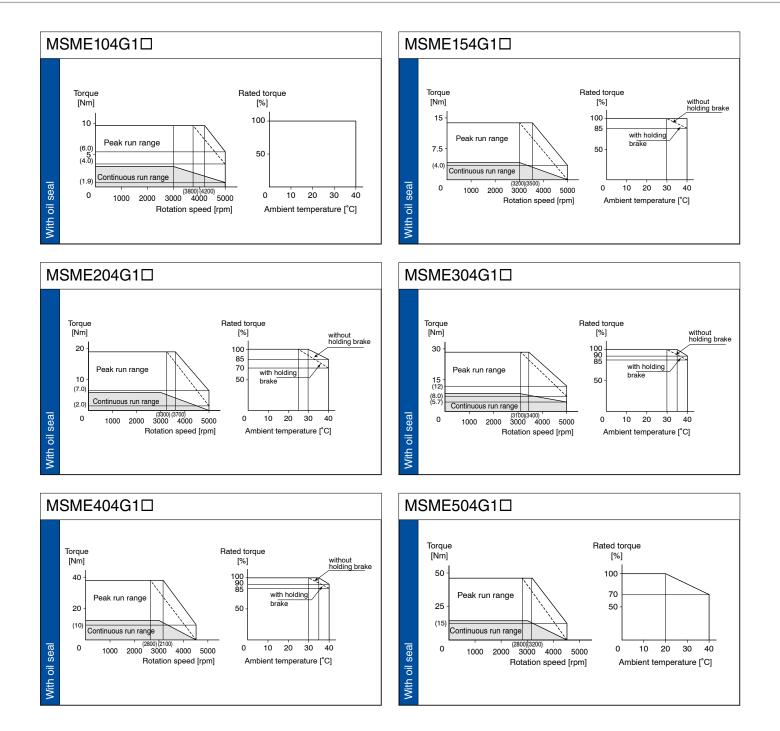
|                                          |                                     | MSME (low ine    | rtia) 1000–5000W    | 400V AC               |                     |                   |                |  |  |  |  |
|------------------------------------------|-------------------------------------|------------------|---------------------|-----------------------|---------------------|-------------------|----------------|--|--|--|--|
| Motor                                    |                                     | MSME104G1D       | MSME154G1D          | MSME204G1D            | MSME304G1D          | MSME404G1D        | MSME504G1D     |  |  |  |  |
| Rated power W                            |                                     | 1000             | 1500                | 2000                  | 3000                | 4000              | 5000           |  |  |  |  |
| Required power kVA                       |                                     | 1.8              | 2.3                 | 3.3                   | 4.5                 | 6.8               | 7.5            |  |  |  |  |
| Rated current A                          |                                     | 3.3              | 4.2                 | 5.7                   | 9.2                 | 9.9               | 12             |  |  |  |  |
| Max. current A o-p                       |                                     | 14               | 18                  | 24                    | 39                  | 42                | 51             |  |  |  |  |
| Rotational speed rpm                     | Rated rotational speed              |                  |                     | -                     | 000                 |                   |                |  |  |  |  |
| Tiotational speed tpin                   | Max. rotational speed               |                  | 1                   | 000                   |                     |                   | 500            |  |  |  |  |
| Weight kg                                | Without holding brake               | 3.5              | 4.4                 | 5.3                   | 8.3                 | 11                | 14             |  |  |  |  |
| Weight Kg                                | With holding brake                  | 4.5              | 5.4                 | 6.3                   | 9.4                 | 12.6              | 16             |  |  |  |  |
| Torque Nm                                | Nominal                             | 3.18             | 4.77                | 6.37                  | 9.55                | 12.7              | 15.9           |  |  |  |  |
| loique Mill                              | Maximal                             | 9.55             | 13.3                | 19.1                  | 28.6                | 38.2              | 47.7           |  |  |  |  |
| Encoder                                  | *                                   |                  | ·                   | 20-bit increr         | nental encoder      |                   | ·              |  |  |  |  |
| Elicodel                                 |                                     |                  |                     | resolution            | : 1048576ppr        |                   |                |  |  |  |  |
| Braking resistor frequency               | With internal resistor              |                  |                     |                       | limit               |                   |                |  |  |  |  |
| times/min                                | With external resistor              |                  | No limit            |                       |                     |                   |                |  |  |  |  |
| Moment of inertia of rotor               | Without holding brake               | 2.03             | 2.84                | 3.68                  | 6.5                 | 12.9              | 17.4           |  |  |  |  |
| (x10 <sup>-4</sup> kg · m <sup>2</sup> ) | With holding brake                  | 2.35             | 3.17                | 4.01                  | 685                 | 14.2              | 18.6           |  |  |  |  |
| Recommended inertia ratio betwe          | en load and rotor                   |                  |                     | Ma                    | k. 15:1             |                   |                |  |  |  |  |
|                                          | Temperature (without frost)         | 0–40°C           |                     |                       |                     |                   |                |  |  |  |  |
| Operating conditions                     | Ambient humidity                    |                  |                     | 20-85% RH (           | non-condensing)     |                   |                |  |  |  |  |
| Operating conditions                     | Altitude                            |                  |                     | Max. 1000m            | above sea level     |                   |                |  |  |  |  |
|                                          | Vibration                           |                  |                     | 49                    | m/s²                |                   |                |  |  |  |  |
| Holding brake specifications             | (The holding brake is engage        | d when the power | for the servo drive | r is shut off. Do not | use the holding bra | ke when the motor | is in motion.) |  |  |  |  |
| Static friction torque Nm                |                                     |                  | Min. 7.8            |                       | Min. 11.8           | Min               | . 16.2         |  |  |  |  |
| Engaging time ms                         |                                     |                  | Max. 50             |                       | Max. 80             | Ma                | k. 110         |  |  |  |  |
| Releasing time ms                        |                                     |                  | Ma                  | ax. 15                |                     | Ma                | x. 50          |  |  |  |  |
| Excitation current A DC                  |                                     |                  | 0.81                | ±10%                  |                     | 0.9               | ±10%           |  |  |  |  |
| Releasing voltage V DC                   |                                     |                  |                     | N                     | lin. 2              |                   |                |  |  |  |  |
| Excitation voltage V DC                  |                                     |                  |                     | 24                    | ± 2.4%              |                   |                |  |  |  |  |
|                                          |                                     | Permissible loa  | d and thrust at out | put shaft             |                     |                   |                |  |  |  |  |
| During installation                      | Radial load,                        |                  |                     |                       | 980                 |                   |                |  |  |  |  |
| During operation                         | P-direction N*                      |                  |                     | 490                   |                     | 7                 | 84             |  |  |  |  |
| During installation                      | stallation Axial thrust (push), 588 |                  |                     |                       |                     |                   |                |  |  |  |  |
| During operation                         | A-direction N*                      |                  |                     | 196                   |                     | 3                 | 43             |  |  |  |  |
| During installation                      | Axial thrust (pull),                |                  |                     |                       | 686                 |                   |                |  |  |  |  |
| During operation                         | B-direction N*                      |                  |                     | 196                   |                     | 3                 | 43             |  |  |  |  |

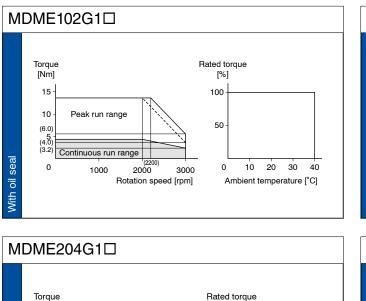
\*For details, please refer to page 19.  $\Box$  = Motor type, please refer to page 10.

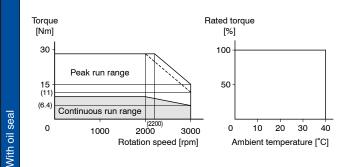
|                                                             | MDME (medium ine            | ertia) 1000–1500W 200V AC                                                          |             |  |  |  |
|-------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------|-------------|--|--|--|
| Motor                                                       |                             | MDME102G1                                                                          | MDME152G1D  |  |  |  |
| Rated power W                                               |                             | 1000                                                                               | 1500        |  |  |  |
| Required power kVA                                          |                             | 1.8                                                                                | 2.3         |  |  |  |
| Rated current A                                             |                             | 5.7                                                                                | 9.4         |  |  |  |
| Max. current A o-p                                          |                             | 24                                                                                 | 40          |  |  |  |
|                                                             | Rated rotational speed      | 2000                                                                               |             |  |  |  |
| Rotational speed rpm                                        | Max. rotational speed       | 3000                                                                               |             |  |  |  |
|                                                             | Without holding brake       | 5.2                                                                                | 6.7         |  |  |  |
| Weight kg                                                   | With holding brake          | 6.7                                                                                | 8.2         |  |  |  |
| Taurus Nus                                                  | Nominal                     | 4.77                                                                               | 7.16        |  |  |  |
| Torque Nm                                                   | Maximal                     | 14.3                                                                               | 21.5        |  |  |  |
| Encoder                                                     |                             | 20-bit incremental<br>resolution: 1048                                             |             |  |  |  |
|                                                             | With internal resistor      | No limit                                                                           |             |  |  |  |
| Braking resistor frequency times/min                        | With external resistor      | No limit                                                                           |             |  |  |  |
| Moment of inertia of rotor                                  | Without holding brake       | 4.6                                                                                | 6.7         |  |  |  |
| (x10 <sup>-4</sup> kg · m <sup>2</sup> ) With holding brake |                             | 5.9                                                                                | 7.99        |  |  |  |
| Recommended inertia ratio between lo                        | bad and rotor               | Max. 10:1                                                                          |             |  |  |  |
|                                                             | Temperature (without frost) | 0–40°C                                                                             |             |  |  |  |
| o                                                           | Ambient humidity            | 20-85% RH (non-c                                                                   | ondensing)  |  |  |  |
| Operating conditions                                        | Altitude                    | Max. 1000m above sea level                                                         |             |  |  |  |
|                                                             | Vibration                   | 49m/s <sup>2</sup>                                                                 |             |  |  |  |
| Holding t                                                   |                             | s engaged when the power for the servo driver is ake when the motor is in motion.) | s shut off. |  |  |  |
| Static friction torque Nm                                   |                             | Min. 4.9                                                                           | Min. 13.7   |  |  |  |
| Engaging time ms                                            |                             | Max. 80                                                                            | Max. 100    |  |  |  |
| Releasing time ms                                           |                             | Max. 70                                                                            | Max. 50     |  |  |  |
| Excitation current A DC                                     |                             | 0.59 ±10%                                                                          | 0.79 ±10%   |  |  |  |
| Releasing voltage V DC                                      |                             | Min. 2                                                                             |             |  |  |  |
| Excitation voltage V DC                                     |                             | 24 ± 2.49                                                                          | %           |  |  |  |
|                                                             | Permissible load            | and thrust at output shaft                                                         |             |  |  |  |
| During installation                                         | Radial load,                | 980                                                                                |             |  |  |  |
| During operation                                            | P-direction N*              | 490                                                                                |             |  |  |  |
| During installation                                         | Axial thrust (push),        | 588                                                                                |             |  |  |  |
| During operation                                            | A-direction N*              | 196                                                                                |             |  |  |  |
| During installation                                         | Axial thrust (pull),        | 686                                                                                |             |  |  |  |
| During operation                                            | B-direction N*              | 196                                                                                |             |  |  |  |

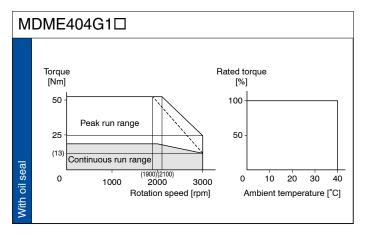
|                                                |                                |                         | MDME (I               | medium inertia) 2000-  | 15000W 400V AC                                 |                          |                        |           |  |  |
|------------------------------------------------|--------------------------------|-------------------------|-----------------------|------------------------|------------------------------------------------|--------------------------|------------------------|-----------|--|--|
| Motor                                          |                                | MDME204G1               | MDME304G1             | MDME404G1              | MDME504G1                                      | MDME754G1                | MDMEC14G1              | MDMEC54G1 |  |  |
| Rated power W                                  |                                | 2000                    | 3000                  | 4000                   | 5000                                           | 7500                     | 11000                  | 15000     |  |  |
| Required power kVA                             |                                | 3.3                     | 4.5                   | 6.8                    | 7.5                                            | 11                       | 17                     | 22        |  |  |
| Rated current A                                |                                | 5.9                     | 8.7                   | 10.6                   | 13                                             | 22                       | 27.1                   | 33.1      |  |  |
| Max. current A o-p                             |                                | 25                      | 37                    | 45                     | 55                                             | 83                       | 101                    | 118       |  |  |
| Rotational speed                               | Rated rotational<br>speed      |                         | 2                     | 2000                   |                                                |                          | 1500                   |           |  |  |
| rpm                                            | Max. rotational speed          |                         |                       | 3000                   |                                                |                          | 2000                   |           |  |  |
| Weight kg                                      | Without holding<br>brake       | 8                       | 11                    | 15.5                   | 18.6                                           | 36.4                     | 52.7                   | 70.2      |  |  |
|                                                | With holding<br>brake          | 9.5                     | 12.6                  | 18.7                   | 21.8                                           | 40.4                     | 58.9                   | 76.3      |  |  |
| Torque Nm                                      | Nominal                        | 9.55                    | 14.3                  | 19.1                   | 23.9                                           | 47.8                     | 70                     | 95.5      |  |  |
|                                                | Maximal                        | 28.6                    | 43.0                  | 57.3                   | 71.6                                           | 119                      | 175                    | 224       |  |  |
| Encoder                                        | ,                              |                         |                       |                        | 20-bit incremental enc<br>resolution: 1048576p |                          |                        |           |  |  |
| Braking resistor                               | With internal<br>resistor      |                         | No limit              |                        | 120                                            |                          | No limit               |           |  |  |
| frequency times/min                            | With external<br>resistor      |                         |                       |                        | No limit                                       |                          |                        |           |  |  |
| Moment of inertia of                           | Without holding<br>brake       | 8.72                    | 12.9                  | 37.6                   | 48                                             | 101                      | 212                    | 302       |  |  |
| rotor (x10 <sup>-4</sup> kg · m <sup>2</sup> ) | With holding<br>brake          | 10                      | 14.2                  | 42.9                   | 53.3                                           | 107                      | 220                    | 311       |  |  |
| Recommended inertia<br>load and rotor          | a ratio between                |                         | Ma                    | x. 10:1                |                                                | Max. 1:1                 |                        |           |  |  |
|                                                | Temperature<br>(without frost) | 0–40°C                  |                       |                        |                                                |                          |                        |           |  |  |
| Operating<br>conditions                        | Ambient<br>humidity            |                         |                       | 2                      | 20-85% RH (non-condensing)                     |                          |                        |           |  |  |
|                                                | Altitude                       |                         |                       |                        | Max. 1000m above sea level                     |                          |                        |           |  |  |
|                                                | Vibration                      |                         |                       | 9m/s²                  |                                                |                          | 24.5m/s <sup>2</sup>   |           |  |  |
| Holdir                                         | ng brake specificat            | tions (The holding bral | ke is engaged when th | ne power for the servo | driver is shut off. Do no                      | ot use the holding brake | e when the motor is in | motion.)  |  |  |
| Static friction torque N                       | Nm                             | Min. 13.7               | Min. 16.2             | M                      | n. 24.5                                        | Min. 58.8                | M                      | in. 100   |  |  |
| Engaging time ms                               |                                | Max. 100                | Max. 110              | N                      | lax. 80                                        | Max. 150                 | M                      | ax. 300   |  |  |
| Releasing time ms                              |                                |                         | x. 50                 | N                      | lax. 25                                        | Max. 50                  | M                      | ax. 140   |  |  |
| Excitation current A D                         |                                | 0.79 ±10%               | 0.90 ±10%             | 1.0                    | 3 ±10%                                         | 1.4 ±10%                 | 1.0                    | 8 ±10%    |  |  |
| Releasing voltage V [                          | DC DC                          |                         | ·                     |                        | Min. 2                                         |                          |                        |           |  |  |
| Excitation voltage V D                         | C                              |                         |                       |                        | 24 ± 2.4%                                      |                          |                        |           |  |  |
|                                                |                                |                         | Permi                 | ssible load and thrust | at output shaft                                |                          |                        |           |  |  |
| During installation                            | Radial load.                   | , c                     | 180                   |                        | 1666                                           | 2058                     |                        | 4508      |  |  |
| During operation P-direction N*                |                                |                         | 90                    |                        | 784                                            | 1176                     | 2254                   |           |  |  |
| During installation                            | Axial thrust (push),           |                         | 88                    |                        | 784                                            | 980                      | 1470                   |           |  |  |
| During operation                               | A-direction N*                 |                         | 96                    |                        | 343                                            | 490                      | 686                    |           |  |  |
| During installation                            | Axial thrust (pull),           | 6                       | 86                    |                        | 980                                            | 1176                     | 1764                   |           |  |  |
| During operation                               | B-direction N*                 | 1                       | 96                    |                        | 343                                            | 490                      |                        | 686       |  |  |

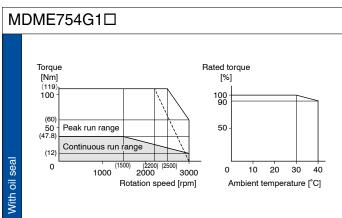

\*For details, please refer to page 19.  $\Box$  = Motor type, please refer to page 10.

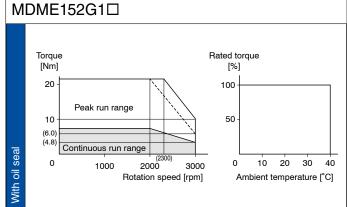

## **MINAS A5 motor specifications**

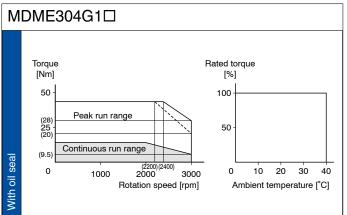

|                                                |                                                  | MHMD (high inertia) 200–750W 2             | 200VAC                                               |                              |  |  |  |  |  |
|------------------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------------|------------------------------|--|--|--|--|--|
| Motor                                          |                                                  | MHMD022G1                                  | MHMD042G1                                            | MHMD082G1                    |  |  |  |  |  |
| Rated power W                                  |                                                  | 200                                        | 400                                                  | 750                          |  |  |  |  |  |
| Required power kVA                             |                                                  | 0.5                                        | 0.9                                                  | 1.3                          |  |  |  |  |  |
| Rated current A                                |                                                  | 1.6                                        | 2.6                                                  | 4                            |  |  |  |  |  |
| Max. current A o-p                             |                                                  | 6.9                                        | 11                                                   | 17                           |  |  |  |  |  |
| Rotational speed rpm                           | Rated rotational speed                           | 3000                                       |                                                      |                              |  |  |  |  |  |
| notational speed tpm                           | Max. rotational speed                            |                                            | 00                                                   | 4500<br>2.5                  |  |  |  |  |  |
| Weight kg                                      | Without holding brake                            |                                            | 0.96 1.4                                             |                              |  |  |  |  |  |
| Weight Kg                                      | With holding brake                               | 1.4                                        | 1.8                                                  | 3.5                          |  |  |  |  |  |
| Torque Nm                                      | Nominal                                          | 0.64                                       | 1.3                                                  | 2.4                          |  |  |  |  |  |
|                                                | Maximal                                          | 1.91                                       | 3.8                                                  | 7.1                          |  |  |  |  |  |
| Encoder                                        |                                                  |                                            | 20-bit incremental encoder<br>resolution: 1048576ppr |                              |  |  |  |  |  |
| Braking resistor                               | With internal resistor                           |                                            | No limit                                             |                              |  |  |  |  |  |
| frequency times/min                            | With external resistor                           |                                            | No limit                                             |                              |  |  |  |  |  |
| Moment of inertia of                           | Without holding brake                            | 0.42                                       | 0.67                                                 | 1.51                         |  |  |  |  |  |
| rotor (x10 <sup>-4</sup> kg · m <sup>2</sup> ) | With holding brake                               | 0.45                                       | 0.7                                                  | 1.61                         |  |  |  |  |  |
| Recommended inertia                            | a ratio between load and rotor                   | Max                                        | Max. 20:1                                            |                              |  |  |  |  |  |
|                                                | Temperature (without frost)                      | 0-40°C                                     |                                                      |                              |  |  |  |  |  |
| Operating condi-                               | Ambient humidity                                 | 20-85% RH (non-condensing)                 |                                                      |                              |  |  |  |  |  |
| tions                                          | Altitude                                         |                                            | Max. 1000m above sea level                           |                              |  |  |  |  |  |
|                                                | Vibration                                        | 49m/s <sup>2</sup>                         |                                                      |                              |  |  |  |  |  |
| Holdin                                         | ng brake specifications (The holding brake is er | ngaged when the power for the servo driver | is shut off. Do not use the holding brake wh         | nen the motor is in motion.) |  |  |  |  |  |
| Static friction torque N                       | Im                                               | Min.                                       | 1.27                                                 | Min. 2.45                    |  |  |  |  |  |
| Engaging time ms                               |                                                  | Max                                        | <. 50                                                | Max. 70                      |  |  |  |  |  |
| Releasing time ms                              |                                                  | Max                                        | <. 15                                                | Max. 20                      |  |  |  |  |  |
| Excitation current A D                         |                                                  | 0.                                         | 36                                                   | 0.42                         |  |  |  |  |  |
| Releasing voltage V D                          |                                                  |                                            | Min. 1                                               |                              |  |  |  |  |  |
| Excitation voltage V D                         | C                                                |                                            | 24 ± 1.2%                                            |                              |  |  |  |  |  |
|                                                |                                                  | Permissible load and thrust at out         | put shaft                                            |                              |  |  |  |  |  |
| During installation                            | Radial load,                                     | 3                                          | 686                                                  |                              |  |  |  |  |  |
| During operation                               | P-direction N*                                   | 24                                         | 392                                                  |                              |  |  |  |  |  |
| During installation                            | Axial thrust (push),                             | 14                                         | 294                                                  |                              |  |  |  |  |  |
| During operation                               | A-direction N*                                   | 9                                          | 147                                                  |                              |  |  |  |  |  |
| During installation                            | Axial thrust (pull),                             | 1                                          | 392                                                  |                              |  |  |  |  |  |
| During operation                               | B-direction N*                                   | 9                                          | 8                                                    | 147                          |  |  |  |  |  |

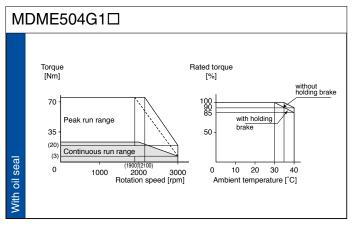

|                                          |                                            | Mł                         | HME (high inertia) 10 | 000-7500W 400V AC       |                                          |                   |                    |                      |  |  |  |
|------------------------------------------|--------------------------------------------|----------------------------|-----------------------|-------------------------|------------------------------------------|-------------------|--------------------|----------------------|--|--|--|
| Motor                                    |                                            | MHME104G1                  | MHME154G1             | MHME204G1               | MHME304G1D                               | MHME404G1D        | MHME504G1D         | MHME754G1D           |  |  |  |
| Rated power W                            |                                            | 1000                       | 1500                  | 2000                    | 3000                                     | 4000              | 5000               | 7500                 |  |  |  |
| Required power kV/                       | 4                                          | 1.8                        | 2.3                   | 3.3                     | 4.5                                      | 6.8               | 7.5                | 9                    |  |  |  |
| Rated current A                          |                                            | 2.9                        | 4.7                   | 5.5                     | 8                                        | 10.5              | 13                 | 22                   |  |  |  |
| Max. current A o-p                       |                                            | 12                         | 20                    | 24                      | 34                                       | 45                | 55                 | 83                   |  |  |  |
| Rotational speed                         | Rated rotational speed                     |                            |                       | 2000                    | )                                        |                   | •                  | 1500                 |  |  |  |
| rpm                                      | Max. rotational speed                      |                            |                       |                         | 3000                                     |                   |                    |                      |  |  |  |
| Weight kg                                | Without holding brake                      | 6.7                        | 8.6                   | 12.2                    | 16                                       | 18.6              | 23                 | 42.3                 |  |  |  |
| weight kg                                | With holding brake                         | 9.1                        | 10.1                  | 15.5                    | 19.2                                     | 21.8              | 26.2               | 46.2                 |  |  |  |
| Torque Nm                                | Nominal                                    | 4.77                       | 7.16                  | 9.55                    | 14.3                                     | 19.1              | 23.9               | 47.8                 |  |  |  |
| Torque Min                               | Maximal                                    | 14.3                       | 21.5                  | 28.6                    | 43                                       | 57.3              | 71.6               | 119                  |  |  |  |
| Encoder                                  |                                            |                            |                       |                         | t incremental enco<br>olution: 1048576pp |                   |                    |                      |  |  |  |
| Braking resistor                         | With internal resistor                     | 83                         | 22                    | 45                      | 19                                       | 17                | 10                 | No limit             |  |  |  |
| frequency times/min                      | With external resistor                     | No limit                   | 130                   | 142                     | 142                                      | 125               | 76                 | No limit             |  |  |  |
| Moment of<br>inertia of rotor            | Without holding brake                      | 24.7                       | 37.1                  | 57.8                    | 90.5                                     | 112               | 162                | 273                  |  |  |  |
| (x10 <sup>-4</sup> kg · m <sup>2</sup> ) | With holding brake                         | 26                         | 38.4                  | 59.6                    | 92.1                                     | 114               | 164                | 279                  |  |  |  |
| Recommended iner                         | tia ratio between load and rotor           |                            | Max. 5:1<br>0-40°C    |                         |                                          |                   |                    |                      |  |  |  |
|                                          | Temperature (without frost)                |                            |                       |                         |                                          |                   |                    |                      |  |  |  |
| Operating                                | Ambient humidity                           | 20–85% RH (non-condensing) |                       |                         |                                          |                   |                    |                      |  |  |  |
| conditions                               | Altitude                                   |                            |                       |                         |                                          |                   |                    |                      |  |  |  |
|                                          | Vibration                                  |                            |                       | 49m/                    | S <sup>2</sup>                           |                   |                    | 24.5m/s <sup>2</sup> |  |  |  |
|                                          | ding brake specifications (The holding bra | ake is engaged whe         | en the power for the  | servo driver is shut of | f. Do not use the h                      | olding brake when | the motor is in mo | tion.)               |  |  |  |
| Static friction torque                   | Nm                                         | Min. 4.9                   | Min. 13.7             |                         | Min. 2                                   |                   |                    | Min. 58.8            |  |  |  |
| Engaging time ms                         |                                            | Max. 80                    | Max. 100              |                         | Max.                                     |                   |                    | Max. 150             |  |  |  |
| Releasing time ms                        |                                            | Max. 70                    | Max. 50               |                         | Max.                                     |                   |                    | Max. 50              |  |  |  |
| Excitation current A                     |                                            | 0.59 ±10%                  | 0.79 ±10%             |                         | 1.3 ±                                    | 10%               |                    | 1.41 ±10%            |  |  |  |
| Releasing voltage V                      |                                            |                            |                       |                         | Min. 2                                   |                   |                    |                      |  |  |  |
| Excitation voltage V                     | DC                                         |                            |                       |                         | 24 ± 2.4%                                |                   |                    |                      |  |  |  |
|                                          |                                            | P                          | ermissible load and   | thrust at output shaft  |                                          |                   |                    |                      |  |  |  |
| During installation                      | Radial load,                               |                            | 980                   |                         | 166                                      | 6                 |                    | 2058                 |  |  |  |
| During operation                         | P-direction N*                             |                            | 490                   |                         | 78                                       | 4                 |                    | 1176                 |  |  |  |
| During installation                      | Axial thrust (push),                       | 588                        |                       |                         |                                          | 980               |                    |                      |  |  |  |
| During operation                         | A-direction N*                             |                            | 196                   |                         | 490                                      |                   |                    |                      |  |  |  |
| During installation                      | Axial thrust (pull),                       |                            | 686                   |                         |                                          | 1176              |                    |                      |  |  |  |
| During operation                         | B-direction N*                             |                            | 196                   |                         | 34                                       | 3                 |                    | 490                  |  |  |  |

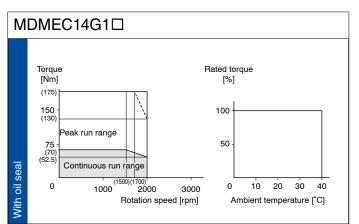

\*For details, please refer to page 19.  $\Box$  = Motor type, please refer to page 10.

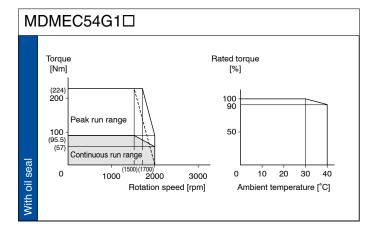


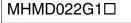



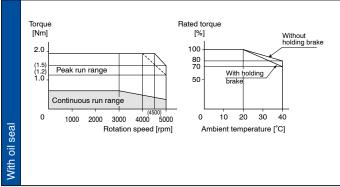



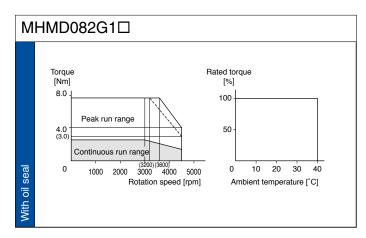



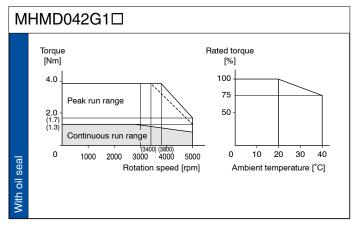



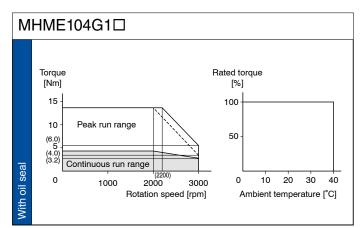



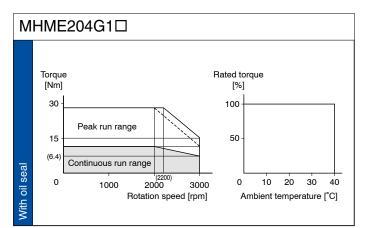



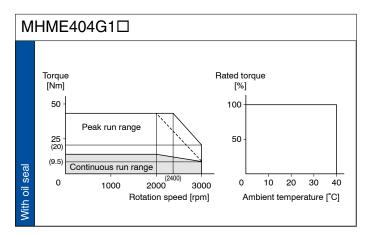



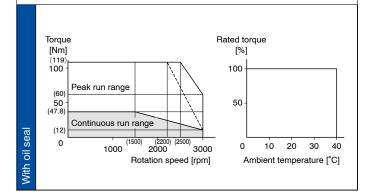



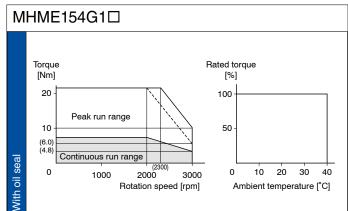



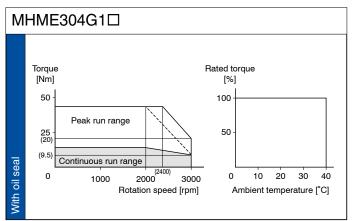



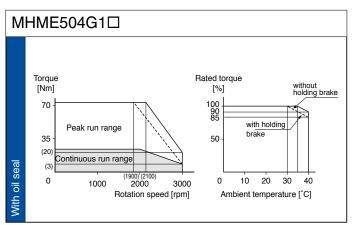





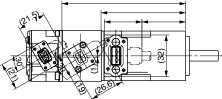



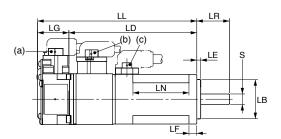



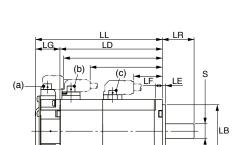




## MHME754G1





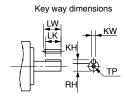

## **MINAS A5 motor dimensions**

50W-100W








(28,8)

(32)

200W-750W

(21,5)

15,8)

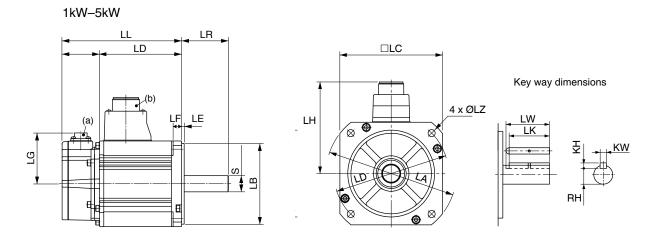


50W-750W

LH

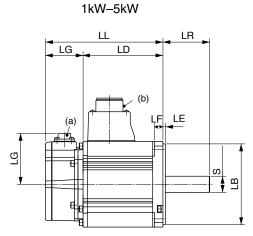
□LC

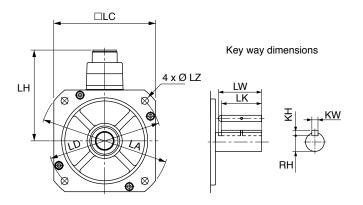
4 x Ø LZ


a) Encoder connector

b) Brake connector

c) Motor connector


|                          |             |                   |         | MSN                                                  | IE (low ine  | rtia) 50–75 | 50W 200V A | С          |         |                  |         |        |   |
|--------------------------|-------------|-------------------|---------|------------------------------------------------------|--------------|-------------|------------|------------|---------|------------------|---------|--------|---|
| Rated pov                | ver         | W                 | 5       | 50 100 200                                           |              |             |            |            |         | 00               | 75      | 50     |   |
| Motor                    |             | Туре              | MSME5   | AZG1□                                                | MSME0        | 12G1□       | MSME0      | 22G1□      | MSME0   | 42G1□            | MSME0   | 82G1□  |   |
| Encoder                  |             |                   |         | 20-bit incremental encoder<br>resolution: 1048576ppr |              |             |            |            |         |                  |         |        |   |
| Motor with<br>holding br |             |                   | Without | With                                                 | Without      | With        | Without    | With       | Without | With             | Without | With   |   |
| LL                       |             | mm                | 72      | 102                                                  | 92           | 122         | 79.5       | 116        | 99      | 135.5            | 112     | 148.2  |   |
| LR                       |             | mm                |         | 2                                                    | 25           |             |            | 3          | 30      |                  | 3       | 5      |   |
| S                        |             | mm                |         | Ø                                                    | 3 h6         |             | Ø 11       | h6         | Ø 14 h6 |                  | Ø 19    | 9 h6   |   |
| LA                       |             | mm                |         | Ø 45                                                 | 5 ±0.2       |             |            | Ø 70       | ) ±0.2  |                  | Ø 90    | ±0.2   |   |
| LB                       |             | mm                |         | Ø 3                                                  | 0 h7         |             |            | Ø 5        | 0 h7    |                  | Ø 7     | ) h7   |   |
| LC                       |             | mm                |         | 38                                                   |              |             |            | e          | 60      |                  | 8       | 0      |   |
| LD                       |             | mm                | 48      | 78                                                   | 68           | 98          | 56.5       | 93         | 76      | 112.5            | 86.2    | 122.2  |   |
| LE                       |             | mm                |         | ;                                                    | 3            |             |            |            | 3       |                  | 3       | 3      |   |
| LF                       |             | mm                |         |                                                      | 6            |             |            | 6          | 5.5     |                  | 8       | 3      |   |
| LG                       |             | mm                |         | 2                                                    | 24           |             |            | 2          | 23      |                  | 2       | 6      |   |
| LH                       |             | mm                |         | (46                                                  | 6.6)         |             |            | (52        | 2.5)    |                  | (61     | .6)    |   |
| LN                       |             | mm                |         | 4                                                    | 13           |             |            |            | -       |                  | -       | •      |   |
| LZ                       |             | mm                |         | 4 x 🤇                                                | Ø <b>3.4</b> |             | 4 x ⊘      | <b>3.4</b> | 4 x 🤅   | ð <b>4.5</b>     | 4 x     | Ø 6    |   |
|                          | LW          | mm                |         | 1                                                    | 14           |             | 20         | 0          | 2       | 5                | 2       | 5      |   |
|                          | LK          | mm                | mm 12.5 |                                                      | 2.5          |             | 18         |            | 18 22.5 |                  | 2.5     | 2      | 2 |
| Key way                  | KW          | mm 3 h9 4 h9 5 h9 |         | h9                                                   | 6 h9         |             |            |            |         |                  |         |        |   |
| Ney way                  | KH mm 3 4 5 |                   | 5       | 6                                                    | 6            |             |            |            |         |                  |         |        |   |
| RH                       |             | mm                |         | 6                                                    | .2           |             | 8.         | 5          | 1       | 1                | 15      | .5     |   |
|                          | TP          | mm                |         | M3, d                                                | lepth 6      |             | M4, de     | epth 8     | M5, d   | depth 8 M5, dept |         | pth 10 |   |
| Weight                   |             | kg                | 0.32    | 0.53                                                 | 0.47         | 0.68        | 0.82       | 1.30       | 1.2     | 1.7              | 2.3     | 3.1    |   |

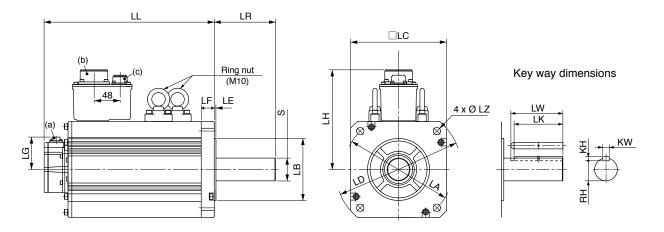

.



# a) Encoder connector b) Motor connector

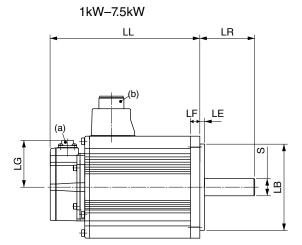
|           |                          |      | MSME (low i | nertia) 1kW–1.5k\ | N 200VAC, 1kW- | 5kW 400VAC |            |            |  |
|-----------|--------------------------|------|-------------|-------------------|----------------|------------|------------|------------|--|
| Rated pow | er                       | kW   | 1.0         | 1.5               | 2.0            | 3.0        | 4.0        | 5.0        |  |
| Matau     | 200V AC                  | Tura | MSME102G1□  | MSME152G1□        | -              | -          | -          | -          |  |
| Motor     | 400V AC                  | Туре | MSME104G1□  | MSME154G1□        | MSME204G1□     | MSME304G1□ | MSME404G1□ | MSME504G1□ |  |
|           | Without<br>holding brake | mm   | 141         | 159.5             | 178.5          | 190        | 208        | 243        |  |
| LL        | With<br>holding<br>brake | mm   | 168         | 186.5             | 205.5          | 215        | 233        | 268        |  |
| LR        |                          | mm   |             | 55                |                | 55         | 6          | 5          |  |
| S         |                          | mm   |             | Ø 19 h6           |                | Ø 22 h6    | Ø 2        | 4 h6       |  |
| LA        |                          | mm   |             | Ø 135             |                | Ø 162      | Ø          | 165        |  |
| LB        |                          | mm   | Ø 95 h7     |                   |                |            | Ø 110 h7   |            |  |
| LC        |                          | mm   |             | 100               |                | 120        | 130        |            |  |
| LD        |                          | mm   | Ø 115       |                   |                |            | Ø 145      |            |  |
| LE        |                          | mm   | 3           |                   |                |            | (          | 6          |  |
| LF        |                          | mm   |             | 10                |                | 12         | 1          | 2          |  |
| LG        |                          | mm   |             | (60)              |                |            | (60)       |            |  |
| LH        |                          | mm   |             | (101)             |                | (113)      | (1         | 18)        |  |
| LZ        |                          | mm   |             |                   | 4 x            | Ø 9        |            |            |  |
|           | LW                       | mm   |             | 4                 | 15             |            | 5          | 5          |  |
|           | LK                       | mm   |             | 42                |                | 41         | 5          | 1          |  |
| Key way   | KW                       | mm   |             | 6 h9              |                |            | 8 h9       |            |  |
|           | KH                       | mm 6 |             | 7                 |                |            |            |            |  |
|           | RH                       | mm   |             | 15.5              |                | 18         | 20         |            |  |
| Weight    | Without holding brake    | kg   | 3.5         | 4.4               | 5.3            | 8.3        | 11         | 14         |  |
| vveigni   | With holding brake       | kg   | 4.5         | 5.4               | 6.3            | 9.4        | 12.6       | 16         |  |

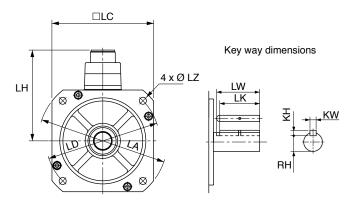





#### a) Encoder connector

b) Motor connector


|             |                          |      | MDME (medi | um inertia) 1kW-1 | .5kW 200VAC, 2- | 5kW 400VAC |            |               |  |  |
|-------------|--------------------------|------|------------|-------------------|-----------------|------------|------------|---------------|--|--|
| Rated power |                          | kW   | 1.0        | 1.5               | 2.0             | 3.0        | 4.0        | 5.0           |  |  |
| Matax       | 200V AC                  | Tura | MDME102G1  | MDME152G1         | -               | _          | _          | _             |  |  |
| Motor       | 400V AC                  | Туре | _          | -                 | MDME204G1       | MDME304G1  | MDME404G1  | MDME504G1□    |  |  |
| LL          | Without<br>holding brake | mm   | 138        | 155.5             | 173             | 208        | 177        | 196           |  |  |
|             | With holding brake       | mm   | 163        | 180.5             | 198             | 233        | 202        | 221           |  |  |
| LR          |                          | mm   | 5          | 5                 | 55              | 65         | 7          | 0             |  |  |
| S           |                          | mm   |            | Ø 22 h6           |                 | Ø 24 h6    | Ø 3        | 5 h6          |  |  |
| LA          |                          | mm   |            | Ø                 | 165             |            | Ø          | 233           |  |  |
| LB          |                          | mm   |            | Ø <b>1</b> 1      | l0 h7           |            | Ø 114.3 h7 |               |  |  |
| LC          |                          | mm   | 130        |                   |                 |            | 176        |               |  |  |
| LD          |                          | mm   |            | Ø                 | Ø               | 200        |            |               |  |  |
| LE          |                          | mm   | 6          |                   |                 | 3          | .2         |               |  |  |
| LF          |                          | mm   |            | 1                 | 2               |            | 1          | 8             |  |  |
| LG          |                          | mm   |            |                   | 8)              | 34)        |            |               |  |  |
| LH          |                          | mm   | (1         | (116) (118)       |                 |            | (14        | 40)           |  |  |
| LZ          |                          | mm   |            | 4 x               | Ø 9             |            | 4 x Ø      | 0 <b>13.5</b> |  |  |
|             | LW                       | mm   |            | 4                 | -5              |            | 5          | 5             |  |  |
|             | LK                       | mm   | 4          | 1                 | 5               | 51         | 5          | 0             |  |  |
| Key way     | KW                       | mm   |            | 8                 | h9              |            | 10         | h9            |  |  |
|             | КН                       | mm   | nm 7       |                   |                 | 8          |            |               |  |  |
|             | RH                       | mm   | 1          | 8                 | 2               | 0          | 3          | 0             |  |  |
| Weight      | Without holding brake    | kg   | 5.2        | 6.7               | 8.0             | 11.0       | 15.6 18.6  |               |  |  |
| vvelgni     | With holding brake       | kg   | 6.7        | 8.2               | 9.5             | 12.6       | 18.7       | 21.8          |  |  |






- a) Encoder connector
- b) Brake connector
- c) Motor connector

|             | MDME (mediur          | n inertia) 7. | 5kW–15kW 400V | AC         |            |
|-------------|-----------------------|---------------|---------------|------------|------------|
| Rated power |                       | kW            | 7.5           | 11         | 15         |
| Motor       | 400V AC               | Туре          | MDME754G1□    | MDMEC14G1□ | MDMEC54G1□ |
| LL          | Without holding brake | mm            | 312           | 316        | 384        |
|             | With holding brake    | mm            | 337           | 364        | 432        |
| LR          |                       | mm            | 113           | 1          | 16         |
| S           |                       | mm            | Ø 42 h6       | Ø 5        | 5 h6       |
| LA          |                       | mm            | Ø <b>233</b>  | Ø          | 268        |
| LB          |                       | mm            | Ø 114.3 h7    | Ø 20       | )0 h7      |
| LC          |                       | mm            | 176           | 22         | 20         |
| LD          | mm                    | Ø 200         | Ø             | 235        |            |
| LE          |                       | mm            | 3.2           |            | 4          |
| LF          |                       | mm            | 24            | 3          | 2          |
| LG          |                       | mm            |               | (60)       |            |
| LH          |                       | mm            | (184)         | (20        | 05)        |
| LZ          |                       | mm            |               | 4 x ∅ 13.5 |            |
|             | LW                    | mm            | 96            | 9          | 8          |
|             | LK                    | mm            |               | 90         |            |
| Key way     | KW                    | mm            | 12 h9         | 16         | h9         |
|             | KH                    | mm            | 8             | 1          | 0          |
| RH          |                       | mm            | 37            | 4          | .9         |
| Weight      | Without holding brake | kg            | 36.4          | 52.7       | 70.2       |
| vveignt     | With holding brake    | kg            | 40.4          | 58.9       | 76.3       |





- a) Encoder connector
- b) Motor connector

|            |                       |      |              | MHME (high i | nertia) 1kW–7.  | 5kW 400VAC  |                    |                 |                 |  |
|------------|-----------------------|------|--------------|--------------|-----------------|-------------|--------------------|-----------------|-----------------|--|
| Rated powe | r                     | kW   | 1.0          | 1.5          | 2.0             | 3.0         | 4.0                | 5.0             | 7.5             |  |
| Motor      | 400V AC               | Туре | MHME104G1    | MHME154G1    | MH-<br>ME204G1□ | MHME304G1   | MH-<br>ME404G1□    | MH-<br>ME504G1□ | MH-<br>ME754G1□ |  |
| LL         | Without holding brake | mm   | 173          | 190.5        | 177             | 196         | 209.5              | 238.5           | 357             |  |
| LL         | With holding brake    | mm   | 198          | 215.5        | 202             | 221         | 234.5              | 263.5           | 382             |  |
| LR         |                       | mm   | 7            | 0            |                 | 80          |                    |                 | 113             |  |
| S          |                       | mm   | Ø 2          | 2 h6         |                 | Ø <b>35</b> | h6                 |                 | Ø 42 h6         |  |
| LA         |                       | mm   | Ø            | 165          |                 |             | Ø 233              |                 |                 |  |
| LB         |                       | mm   | Ø <b>1</b> 1 | l0 h7        |                 |             | arnothing 114.3 h7 |                 |                 |  |
| LC         |                       | mm   | 1:           | 30           |                 |             | 176                |                 |                 |  |
| LD         |                       | mm   | Ø            | 145          |                 |             | Ø 200              |                 |                 |  |
| LE         |                       | mm   |              | 6            |                 |             | 3.2                |                 |                 |  |
| LF         |                       | mm   | 1            | 2            |                 | 18          |                    |                 | 24              |  |
| LG         |                       | mm   |              |              |                 |             |                    |                 |                 |  |
| LH         |                       | mm   | (1           | 16)          |                 | (140        | ))                 |                 | (184)           |  |
| LZ         |                       | mm   | 4 x          | Ø 9          |                 |             | 4 x ∅ 13.5         |                 |                 |  |
|            | LW                    | mm   | 4            | 5            |                 | 55          |                    |                 |                 |  |
|            | LK                    | mm   | 4            | 1            |                 | 50          |                    |                 | 90              |  |
| Key way    | KW                    | mm   | 8            | h9           |                 | 10 h        | 9                  |                 | 12 h9           |  |
|            | KH                    | mm   | -            | 7            |                 | 8           |                    |                 |                 |  |
|            | RH                    | mm   | 1            | 8            |                 | 30          |                    |                 | 37              |  |
| Weight     | Without holding brake | kg   | 6.7          | 8.6          | 12.2            | 16          | 18.6               | 23              | 42.3            |  |
| weigin     | With holding brake    | kg   | 8.1          | 10.1         | 15.5            | 19.2        | 21.8               | 26.2            | 46.2            |  |

## MINAS LIQI

MINAS LIQI, the simple and cost-effective servo drive solution from Panasonic. Especially for dynamic applications MINAS LIQI offers many advantages as far as reliability, speed, and precision is concerned compared to stepping motors, asynchronous motors or pneumatic solutions. As for the MINAS A5 series, the PANATERM software and the MINAS SELECTION TOOL assist users in setting up and configuring the MINAS LIQI series. The series is optimally suited for the processing industries involving food, packaging, printing, metals, and plastics.

### Features

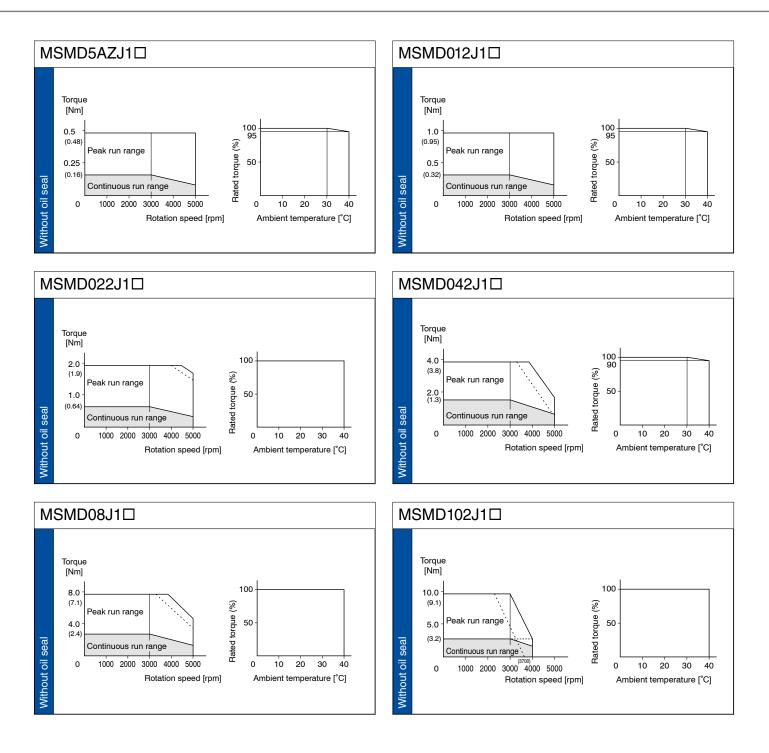
- Incremental encoder: 2500 pulses per revolution
- Response frequency: 1kHz bandwidth (velocity response)
- PANATERM: Free software for configuration and motion simulation via USB port
- Real-time autotuning function during operation
- Damping (1-200Hz) and notch filters (50-5000Hz)
- Rotary switch (RSW): to set the stiffness manually

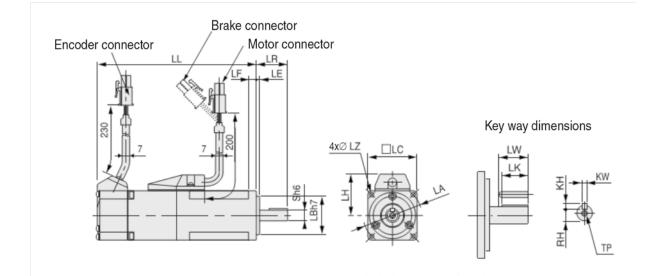
|                                                                        |             |                                       | Dr            | iver (50W–1000V                                                             | AC 1-phase)     |           |                |                 |  |  |  |
|------------------------------------------------------------------------|-------------|---------------------------------------|---------------|-----------------------------------------------------------------------------|-----------------|-----------|----------------|-----------------|--|--|--|
| Dation                                                                 | MINAS LIQI  | Туре                                  |               | MBDJT2207                                                                   | MCDJT3220       |           |                |                 |  |  |  |
| Driver                                                                 | Frame       | mm                                    |               | B (D: 55.5 x H                                                              | : 150 x W: 150) |           | C (D: 65.5 x H | : 150 x W: 190) |  |  |  |
| Rated power                                                            |             | w                                     | 50            | 100                                                                         | 200             | 400       | 750            | 1000            |  |  |  |
| Motor (MSMD***J1* low inertia)                                         |             |                                       |               |                                                                             |                 |           |                |                 |  |  |  |
| Motor                                                                  |             | Туре                                  | MSMD5AZJ1□    | MSMD5AZJ1D MSMD012J1D MSMD022J1D MSMD042J1D MSMD082J1D MSMD102J1D           |                 |           |                |                 |  |  |  |
| Nominal torque (p                                                      | eak torque) | Nm                                    | 0.16 (0.48)   | 0.32 (0.95)                                                                 | 0.64 (1.91)     | 1.3 (3.8) | 2.4 (7.1)      | 3.2 (9.5)       |  |  |  |
| Rated rotational spread)                                               | beed (max.  | rpm                                   |               | 3000                                                                        | (5000)          |           | 3000 (4500)    | 3000 (4000)     |  |  |  |
| Inertia<br>(with holding brake                                         | e)          | x10 <sup>-4</sup> kg · m <sup>2</sup> | 0.025 (0.027) | 0.025 (0.027) 0.051 (0.054) 0.14 (0.16) 0.26 (0.28) 0.87 (0.97) 1.16 (1.26) |                 |           |                |                 |  |  |  |
| Encoder 2500ppr, incremental, resolution: 10000                        |             |                                       |               |                                                                             |                 |           |                |                 |  |  |  |
| Degree of protection IP65 (excluding shaft feedthrough and connectors) |             |                                       |               |                                                                             |                 |           |                |                 |  |  |  |

\_\_\_\_ = Motor type

T = With holding brake

S = Without holding brake

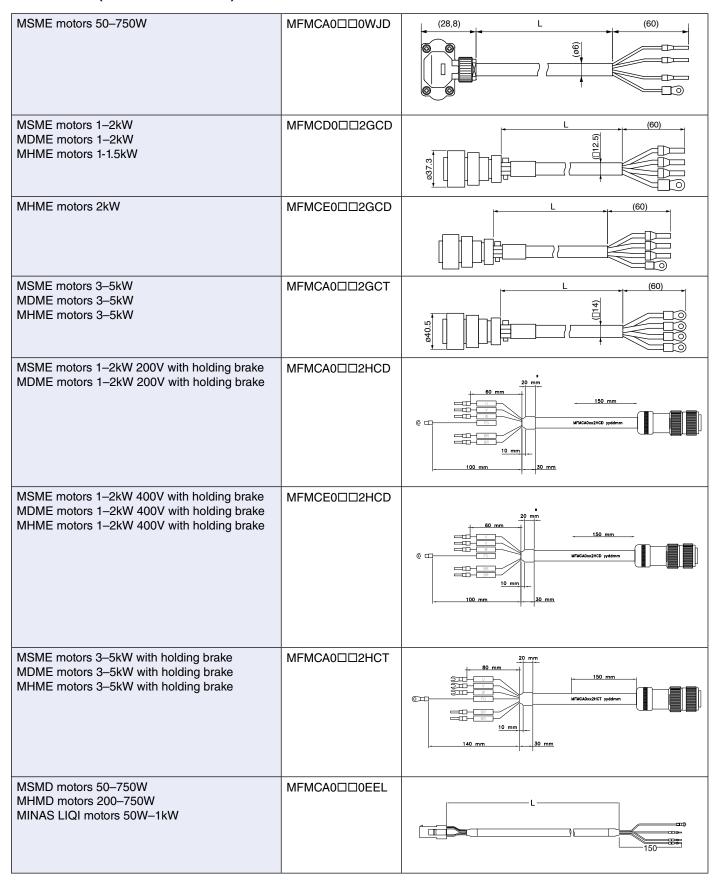



# **MINAS LIQI driver functions**

|                      |                      |                       |               | Frame | MINAS LIQI                                                                    |
|----------------------|----------------------|-----------------------|---------------|-------|-------------------------------------------------------------------------------|
|                      |                      | Marin cincuit         |               | В     | 1-phase, 220–240V +5%, -10%, 50/60Hz                                          |
|                      | Cumply voltoge       | Main circuit          | 2001/         | С     | 1-phase, 220-240V (+5%, -10%), 50/60Hz                                        |
|                      | Supply voltage       | Operatoral administra | 200V          | В     | 1-phase, 220-240V (+5%, -10%), 50/60Hz                                        |
|                      |                      | Control circuit       |               | С     | 1-phase, 220-240V (+5%, -10%), 50/60Hz                                        |
|                      |                      | Temperature           |               |       | 0–50°C, storage temperature: -20 to +65°C<br>(max. temperature 80°C for 72 h) |
|                      | Operating conditions | Ambient humidity      |               |       | Operation and storage: 20–85% RH<br>(non-condensing)                          |
|                      | Operating conditions | Altitude              |               |       | Max. 1000m above sea level                                                    |
| Basic specifications |                      | Vibration             |               |       | Max. 5.88m/s², 10–60Hz<br>(no continuous use at resonance<br>frequency)       |
| ecifi                | Control method       |                       |               |       | IGBT sinusoidal PWM                                                           |
| ısic sp              | Encoder              | Incremental (default) |               |       | 2500ppr (resolution 10000, serial incremental encoder)                        |
| Ba                   | Control signals      |                       | Input points  |       | 6 (multifunctional, customizable)                                             |
|                      | Control signals      |                       | Output points |       | 3 (multifunctional, customizable)                                             |
|                      |                      |                       | Input points  |       | 2 (photocoupler, line driver)                                                 |
|                      | Pulse signals        |                       | Output points |       | 3 line driver (A, B and Z-phase) and 1 open collector (Z-phase)               |
|                      | Interface            |                       | USB           |       | Interface to PC, etc.                                                         |
|                      | Front panel          |                       |               |       | 2 digital 7-segment LED displays, 2 digital rotary switches                   |
|                      | Braking resistor     |                       |               |       | External braking resistor only                                                |
|                      | Dynamic brake        |                       |               |       | Built-in                                                                      |
|                      | Control mode         |                       |               |       | Position control                                                              |

|           |                  |                           |                                          | MINAS LIQI                                                                                                                                |
|-----------|------------------|---------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|           |                  | Control input             |                                          | 1. Clear deviation counter<br>2. Command pulse inhibition<br>3. Damping control switching                                                 |
|           |                  | Control output            |                                          | Positioning complete etc.                                                                                                                 |
|           |                  |                           | Line driver                              | 500kpps                                                                                                                                   |
|           | Position control |                           | Signal format                            | Differential input/square-wave pulse                                                                                                      |
|           |                  | Pulse input               | Electronic gear                          | Scaling of pulse frequency from<br>1/1000 to 1000 times                                                                                   |
| suo       |                  |                           | Smoothing filter                         | Primary delay filter or FIR filter, customizable                                                                                          |
| Functions |                  | Damping control           |                                          | Available                                                                                                                                 |
| 5         |                  | Autotuning                |                                          | Automatic adjustment of the servo controller's<br>rigidity to the vibration behavior of the me-<br>chanical parts and changes to the load |
|           |                  | Division of encoder feedb | ack pulse                                | Any value up to the max. number of encoder pulses                                                                                         |
|           | Other features   | Protective function       | Error messages causing switch-off        | Overvoltage, undervoltage, overspeed, over-<br>load, overheat, overcurrent and encoder error,<br>etc.                                     |
|           |                  |                           | Error messages requiring acknowledgement | Excessive position deviation, command pulse division error, EEPROM error, etc.                                                            |
|           |                  | Alarm history             |                                          | Can be logged for reference                                                                                                               |






|         |                 |            |                                            |            | MINAS        | S LIQI mo                              | otors (low       | inertia) |              |        |                     |       |              |       |
|---------|-----------------|------------|--------------------------------------------|------------|--------------|----------------------------------------|------------------|----------|--------------|--------|---------------------|-------|--------------|-------|
| Motor   |                 | Туре       | MSMD5                                      | 5AZJ1□     | MSMD         | 012J1□                                 | MSMD             | )22J1□   | MSMD         | 042J1□ | MSMD082J1D MSMD102J |       |              |       |
|         | Encoder         |            | 2500ppr, incremental,<br>resolution: 10000 |            |              |                                        |                  |          |              |        |                     |       |              |       |
| Motor w | ith/without hol | ding brake | With-<br>out                               | With       | With-<br>out | With                                   | With-<br>out     | With     | With-<br>out | With   | With-<br>out        | With  | With-<br>out | With  |
| LL      |                 | mm         | 72                                         | 102        | 92           | 122                                    | 79.5             | 116      | 99           | 135.5  | 112                 | 149.2 | 127.2        | 164.2 |
| LR      |                 | mm         |                                            | 2          | 5            |                                        |                  | 3        | 0            |        |                     | 3     | 5            |       |
| S       |                 | mm         |                                            | Ø          | 3 h6         |                                        | Ø 1 <sup>.</sup> | l h6     | Ø 1          | 4 h6   |                     | Ø 1   | 9 h6         |       |
| LA      |                 | mm         |                                            | Ø 45       | ± 0.2        |                                        |                  | Ø 70     | ± 0.2        |        |                     | Ø 90  | ± 0.2        |       |
| LB      |                 | mm         |                                            | Ø <b>3</b> | 0 h7         |                                        |                  | Ø 5      | 0 h7         |        | Ø 70 h7             |       |              |       |
| LC      |                 | mm         |                                            | 3          | 8            |                                        |                  | 6        | 0            |        |                     | 8     | 0            |       |
| LE      |                 | mm         |                                            |            |              |                                        |                  | (        | 3            |        |                     |       |              |       |
| LF      |                 | mm         |                                            | (          | 6            |                                        | 6.5              |          |              |        | 8                   | 3     |              |       |
| LZ      |                 | mm         |                                            | 4 x ∅ 3.4  |              |                                        | 4 x ∅ 4.5        |          |              |        |                     | 4 x   | Ø 6          |       |
|         | LW              | mm         |                                            | 1          | 4            |                                        | 2                | 0        | 2            | 5      |                     | 2     | 5            |       |
|         | LK              | mm         |                                            | 12.5       |              |                                        | 1                | 8        | 22           | 2.5    |                     | 2     | 2            |       |
| way     | KW              | mm         |                                            | 3 h9       |              |                                        | 4                | า9       | 5            | h9     |                     | 6     | h9           |       |
| Key way | КН              | mm         |                                            | ;          | 3            |                                        | 4                | Ļ        | Į            | 5      | 6                   |       |              |       |
| _       | RH              | mm         | 6.2                                        |            |              | 8.5 11                                 |                  | 1        | 15.5         |        |                     |       |              |       |
|         | TP              | mm         |                                            | M3 de      | epth 6       | th 6 M4 depth 8 M5 depth 8 M5 depth 10 |                  |          |              |        |                     |       |              |       |
| Weight  |                 | kg         | 0.32                                       | 0.53       | 0.47         | 0.68                                   | 0.82             | 1.30     | 1.2          | 1.7    | 2.3                 | 3.1   | 2.8          | 3.6   |

#### Motor cables (motor - servo driver)

All dimensions are in mm



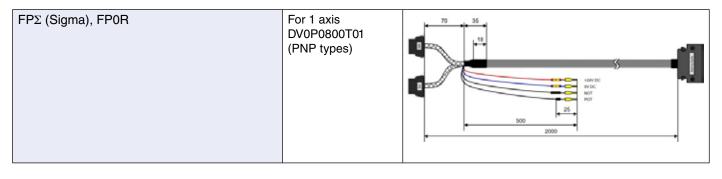
= Length

01 = 1m

10 = 10m

### Brake cable (motor - servo driver)

All dimensions are in mm


| MSME motors 50–750W                                                      | MFMCB0□□0PJT | 90 | L∬     |    |
|--------------------------------------------------------------------------|--------------|----|--------|----|
| MSMD motors 50–750W<br>MHMD motors 200–750W<br>MINAS LIQI motors 50W–1kW | MFMCB0□□0GET | 50 | ∬<br>L | 40 |

#### Encoder cable (motor - servo driver)

| MSME motors 50–750W<br>with 17/20-bit incremental encoder                          | MFECA0000WJD |  |
|------------------------------------------------------------------------------------|--------------|--|
| MSME, MDME, MHME motors 900W–15kW with 17/20-bit incremental encoder               | MFECA000GTD  |  |
| MINAS LIQI motors 50W–1kW<br>MHMD, MSMD motors 200W–750W                           | MFECA0□□0EAM |  |
| MSME motors 50–750W<br>with 17-bit absolute encoder (battery box)                  | MFECA0□□0GJE |  |
| MSME, MDME, MHME motors 900W–15kW<br>with 17-bit absolute encoder<br>(battery box) | MFECA0DD0GTE |  |

### Control cable (PLC – MINAS LIQI driver)

### Direct connection to FP series PLCs

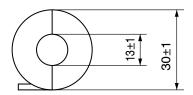


## Control cable (PLC – MINAS A5 driver)

All dimensions are in mm

### **Direct connection to FP series PLCs**

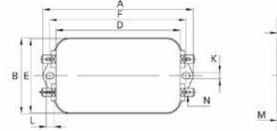
| FPΣ (Sigma)                                                   | For 1 axis<br>DVOP0980W-1<br>(NPN types)<br>DVOP0982W-1<br>(PNP types)  |                               |
|---------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------|
| FPΣ (Sigma),<br>FP0R                                          | For 1 axis<br>DV0P0988W-1<br>(PNP types)<br>DV0P0989W-1<br>(NPN types)  | PLC<br>input<br>PLC<br>output |
| FPΣ (Sigma)                                                   | For 2 axes<br>DVOP0981W-1<br>(NPN types)<br>DVOP0983W-1<br>(PNP types)  |                               |
| FPΣ (Sigma)<br>Positioning unit<br>FP2SH<br>Positioning units | For 2 axes<br>DVOP0985W1<br>(transistor)<br>DVOP0986W1<br>(line driver) | 18                            |
| FP7<br>Positioning unit                                       | For 2 axes<br>DV0P0976W1<br>(line driver)<br>DV0P0975W1<br>(transistor) |                               |

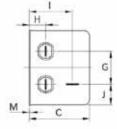

| Product no.                    | Details/Comment        | s/Dimensions       |                                                       |                                     |  |
|--------------------------------|------------------------|--------------------|-------------------------------------------------------|-------------------------------------|--|
| Control cable                  |                        |                    |                                                       |                                     |  |
| DV0P4360                       | 50W–15kW               | 50-pin type        | I/O cable X4, loose wires, 2m                         |                                     |  |
| DVOP4360P                      | 50W–15kW               | 50-pin type        | I/O cable X4, loose wires, 2m, position control       |                                     |  |
| DVOP4360V                      | 50W–15kW               | 50-pin type        | I/O cable X4, loose wires, 2m, velocity control       |                                     |  |
| DV0PM20024CAB020               | 50W–15kW               | 8-pin type         | Communication cable X2, RS485, RS232, loose wires, 2m |                                     |  |
| DV0PM20025CAB020               | 50W–15kW               | 8-pin type         | Safety cable X3, loose wires, 2m                      |                                     |  |
| DV0P0800T02                    | 50W–15kW               | 26-pin type        | I/O cable X4, loose wires, 2m                         |                                     |  |
| Programming cable              |                        | -                  |                                                       |                                     |  |
| CABMINIUSB5D                   | 50W–15kW               | USB                |                                                       |                                     |  |
| Connector set for servo driver |                        | ·                  |                                                       |                                     |  |
| DV0P4350                       | 50W–15kW               | 50-pin type        | I/Os, X4                                              |                                     |  |
| DVOP0770                       | 50W–15kW               | 26-pin type        | I/Os, X4                                              |                                     |  |
| DV0PM20026                     | 50W–15kW               | -                  | External encoder connector X5                         |                                     |  |
| Connector set encoder, motor   | without holding bra    | ke                 |                                                       |                                     |  |
| DVOP4380                       | 50W–1kW                | -                  | MINAS LIQI/A4                                         |                                     |  |
| DV0PM20035                     | 50W–750W               | _                  | MINAS A5, IP67                                        |                                     |  |
| DV0PM20036                     | 1kW–2kW                | -                  | MINAS A5 MSME, MDME, MHME 1–1.5kW                     |                                     |  |
| DV0PM20036A                    | 1kW–2kW                | _                  | Angled type; MINAS A5 MSME, MDME, MHME 1–1.5kW        |                                     |  |
| DV0PM20037                     | 2kW–5kW                | _                  | MINAS A5 MSME 3–5kW, MDME, MHME                       |                                     |  |
| DV0PM20037A                    | 2kW–5kW                | _                  | Angled type; MINAS A5 MSME 3–5kW, MDME, MHME          |                                     |  |
| DV0PM20056                     | 7.5kW–15kW             | _                  | MINAS A5 MDME; MHME 7.5kW                             |                                     |  |
| Connector set encoder, motor   |                        |                    |                                                       |                                     |  |
| DV0P4390                       | 50W–1kW                | _                  | MINAS LIQI/A4                                         |                                     |  |
| DV0PM20040                     | 50W-750W               | _                  |                                                       |                                     |  |
| DV0PM20038                     | 1kW–2kW                |                    | MINAS A5, IP67, holding brake connector kit           |                                     |  |
| DV0PM20038A                    | 1kW–2kW                |                    | MINAS A5 MSME, MDME, MHME 1–1.5kW                     |                                     |  |
| DV0PM20038A                    | 2kW–5kW                | _                  | Angled type; MINAS A5 MSME, MDME, MHME 1–1.5kW        |                                     |  |
|                                |                        | _                  | MINAS A5 MSME 3–5kW, MDME, MHME                       |                                     |  |
| DV0PM20039A                    | 2kW–5kW                | -                  | Angled type; MINAS A5 MSME 3–5kW, MDME, MHME          |                                     |  |
| DV0PM20057                     | 7.5kW–15kW             | -                  | MINAS A5 MDME; MHME 7.5kW                             |                                     |  |
| EMC filter                     | F014/ 400014/          | 1                  |                                                       |                                     |  |
| FN2080-6-06                    | 50W–1000W<br>50W–750W  | 1-phase            | 250VAC, MINAS A5 50W–750W, MINAS LIQI 50W–1000W       |                                     |  |
| FS21238607                     |                        | 1-phase            | Footprint filter, 250VAC                              |                                     |  |
| FN2080-10-06                   | 1kW–1.5kW              | 1-/3-phase         | 500V AC                                               |                                     |  |
| FN3268-7-44                    | 1kW–3kW                | 3-phase            | 500V AC                                               |                                     |  |
| FN3268-16-44                   | 4kW–5kW                | 3-phase            | 500V AC                                               |                                     |  |
| FN3258-30-33                   | 15kW                   | 3-phase            | 400V AC                                               |                                     |  |
| DV0P1460                       | 50W–15kW               | 1-phase            | Ferrite core, noise filter                            |                                     |  |
| Braking resistors              | E010/ 10010/           | 1 2000             | 1000 10010/ 6001/40                                   |                                     |  |
| BWD250100<br>BWD250072         | 50W-100W               | 1-phase            | 100Ω,100W, 600VAC                                     | 110 x 80 x 15 (L x W x D in mm)     |  |
|                                | 200W-750W              | 1-phase            | 72Ω, 100W, 600VAC<br>35Ω, 200W, 600VAC                |                                     |  |
| BWD500035<br>BWD500150         | 1kW–1.5kW<br>1kW–1.5kW | 1-phase<br>3-phase | 150Ω, 200W, 600VAC                                    | <br>216 x 80 x 15 (L x W x D in mm) |  |
| BWD500100                      | 2kW                    | - ·                | 100Ω, 200W, 600VAC                                    |                                     |  |
| BWD600047                      | 3kW–5kW                | 3-phase<br>3-phase | 47Ω, 240W, 600VAC                                     |                                     |  |
| BWD600027                      | 7.5kW                  | 3-phase            | 27Ω, 240W, 600VAC                                     |                                     |  |
|                                |                        |                    |                                                       | -                                   |  |

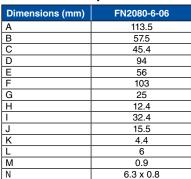
#### Braking resistor



39±1 34±1


### Ferrite core: DV0P1460

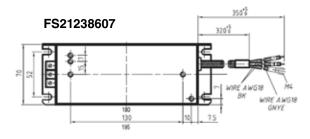




### **EMC** filter

### 200V AC:

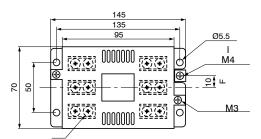
### FN2080-6-06 and FS21238607 for MINAS A5 50–750W and MINAS LIQI 50–1000W 1-phase drivers

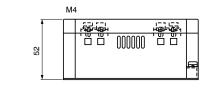






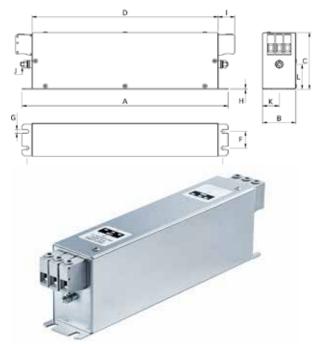

All dimensions are in mm.


#### FN2080-6-06






200V AC:


### FN2080-10-06 for 1–1.5kW 1-phase driver





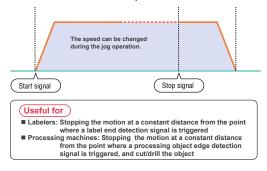
### 400V AC:

### FN3268-7-44 for 1–3kW 3-phase driver, FN3268-16-44 for 4–5kW 3-phase driver



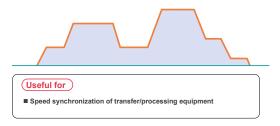
| Dimensions (mm) | FN3268-7-44 | FN3268-16-44 |  |  |  |
|-----------------|-------------|--------------|--|--|--|
| A               | 190         | 250          |  |  |  |
| В               | 40          | 45           |  |  |  |
| C               |             | 70           |  |  |  |
| D               | 160         | 220          |  |  |  |
| E               | 180         | 235          |  |  |  |
| F               | 20          | 25           |  |  |  |
| G               | 4.5         | 5.4          |  |  |  |
| Н               |             | 1            |  |  |  |
| 1               |             | 22           |  |  |  |
| J               | M5          |              |  |  |  |
| K               | 20          | 22.5         |  |  |  |
| L               |             | 29.5         |  |  |  |

### Programmable controllers


| FP7                                                                                                                                                                                                                                                      | FP2SH                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                 |
| Modular high-performance PLC <ul> <li>Scan time of 11ns/step</li> </ul>                                                                                                                                                                                  | Modular high-performance PLC <ul> <li>Scan time of 1ms for 20k steps</li> </ul>                                                                                                                                                                                                                                                                 |
| <ul> <li>Program capacity of 196k steps</li> <li>Additional program capacity with SDHC memory card</li> <li>Batteryless data backup</li> <li>Ethernet 100BASE-TX/10BASE-TX</li> <li>Expandable with up to 16 units for different applications</li> </ul> | <ul> <li>As a high-performance PLC with fast scan times ideally suited for electronic device manufacturing</li> <li>High program capacity of 120k steps</li> <li>32k, 60k step type also available</li> <li>Compatible with Small PC Cards, which serve as a program backup or extended memory for processing a large volume of data</li> </ul> |

| FP∑ (Sigma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FP0R                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Very compact high-performance PLC reliably supports the control of higher speed equipment with more functions featured</li> <li>Excellent basic performance, including program capacity of 32k steps, operation speed of 0.32µs/step and 384 I/O points</li> <li>Built-in 2-axis 100kHz pulse output capable of interpolation control</li> <li>Positioning units capable of controlling network motion controllers</li> <li>Can be equipped with up to 3 ports for program controlled communication without expansion unit</li> <li>Compatible with PROFIBUS, DeviceNet, CANopen and other open field networks</li> </ul> | <ul> <li>Pocket-size ultracompact controller ideal for use in extremely narrow spaces</li> <li>Ultrahigh processing speed of 80ns/step within a range of 0 to 3000 steps</li> <li>Program capacity from 16k–32k steps</li> <li>10–128 I/Os</li> <li>Up to 24 thermocouple input points connectable for multipoint temperature control</li> <li>Multiaxis control for up to 4 axes available without expansion units</li> <li>Batteryless backup of all data</li> </ul> |

| FP-X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FP-X0                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>High-performance compact terminal-block type controller.Wide selection of add-on cassettes allows space saving use of the controller for a variety of purposes</li> <li>Up to three add-on cassettes can be attached to the top of the control unit. The unit is of the terminal block type, but is space saving and allows a variety of applications</li> <li>Ethernet cassette available for data collection</li> <li>Built-in 4-axis pulse output. Two axes for linear interpolation</li> <li>Comment memory for simple maintenance work</li> <li>USB port for direct connection to a PC</li> </ul> | Entry level, compact, multifunctional PLC <ul> <li>Max. 216 I/Os</li> <li>Combined relay and transistor output (NPN) types</li> <li>2 analog input points and a clock/calendar function</li> <li>Max. 2 serial ports: 1 x RS232C, 1 x RS485</li> <li>Program capacity: from 2.5k to 8k steps</li> <li>Data registers: 2550 to 8192 words</li> <li>Ethernet TCP/IP, Modbus RTU, PLC Link</li> <li>Motion control functions</li> </ul> |

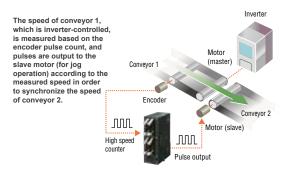

#### Jog positioning control (F171 instruction)

Motion can be started without a preset target value. When a stop signal is input, the target value is set, and the motion is slowed to a stop.

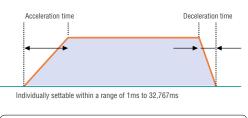


#### Changing the speed (F171 and F172 instructions)

The target speed can be changed by an external signal input during the jog or trapezoidal control operation.



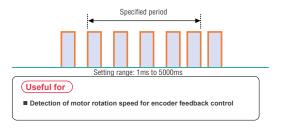

#### Built-in 4-axis pulse outputs (Transistor output type)


Multi-axis (4-axis) control is available without expansion units.

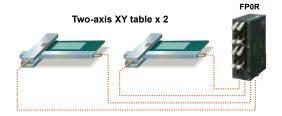


### Simultaneously usable high speed counters (6 channels) and pulse outputs (4 channels)



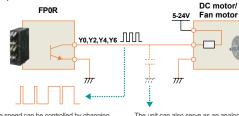

### Individual settings for acceleration and deceleration (F171, F172, F174, and F175 instructions)






#### Measuring the pulse frequency (F178 instruction)

Pulses input in a specified period by a single instruction are counted, and the frequency is calculated.




Two sets can simultaneously undergo two-axis linear interpolation (F175 instruction).



### **Built-in multipoint PWM outputs (4 channels)**

A single FP0R unit can control the speeds of up to six DC motors/fan motors. It also can serve as an analog voltage output unit.



The speed can be controlled by changing the ON width of the PWM output within a range of 0.1% to 99.9%.

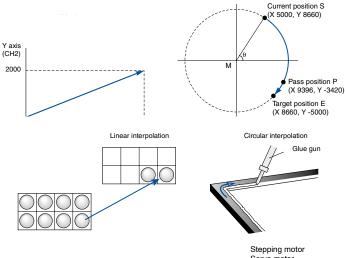
The unit can also serve as an analog voltage output unit (resolution: 1/1000) when a smoothing capacitor is inserted in the circuit.

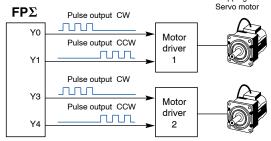
| PLC | Product number | Voltage | Output            | Input points (counters) | Output points (axes) |
|-----|----------------|---------|-------------------|-------------------------|----------------------|
| 100 | AFP0RC16       |         |                   | 8 (6)                   | 8 (4)                |
| 1   | AFP0RC32       | 24V DC  | Transistor<br>NPN | 16 (6)                  | 10 (4)               |
|     | AFP0RF32       |         |                   | 10 (0)                  | 16 (4)               |

### Integrated linear and circular interpolation control

Interpolation functions enable simultaneous control of two axes. Applications that a compact PLC couldn't previously cope with are no longer a challenge. With linear interpolation, the PLC achieves a coordinated, linear movement of the two axes and controls the speed of each axis. Circular interpolation allows points to be smoothly traversed by arced paths for which the user specifies the orientation plane, the radius of curvature, motion path profile and direction of motion.

### Simple and intuitive programming


For programming, a preset value table for starting speed, target speed, acceleration/deceleration time, and other factors will be used. Comes with dedicated instructions for each mode: trapezoidal control, home return, JOG operation, free table operation, linear interpolation and circular interpolation.


### Clockwise/counter-clockwise output method

Reduce overall costs by designing systems that combine with servo motors and small stepping motors without support for Pulse and Sign method.

### Smooth acceleration/deceleration

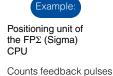
You can choose to set up to 60 steps of acceleration/deceleration. This allows for a smoother movement during long acceleration/ deceleration periods of stepping motors.

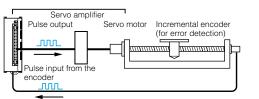






| PLC | Product no. | Voltage Output |                   | Input<br>points | Output<br>points (axes) |
|-----|-------------|----------------|-------------------|-----------------|-------------------------|
|     | FPGC32T2HTM | 24V DC         | Transistor<br>NPN | 16              | 16 (2)                  |
|     | FPGC28P2HTM | 24V DC         | Transistor<br>PNP | 16              | 12 (2)                  |





Home position return

Home search automatically reverses the motor rotation when the positive or negative limit switch is reached and searches for the home position or near home position.

#### Pulse output up to 100kHz

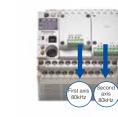
A high output frequency and a rapid 0.02ms start allow for a precise and very fast positioning.





Counts feedback pulse from the encoder to detect errors

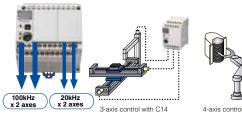
| Positioning unit | Product no.         | Output type | Output type |
|------------------|---------------------|-------------|-------------|
|                  | FPGPP11             | 1-axis type | Transistor  |
| 1 10             | FPGPP21 2-axis type |             | Transistor  |
| 1 4              | FPGPP12             | 1-axis type | Line driver |
| -21              | FPGPP22             | 2-axis type | Line driver |


### For low cost multi-axis position control

### Built-in 4-axis pulse output (transistor output type)

The transistor output type C14 comes with 3-axis while C30/C38 and C60 come with 4-axis pulse output inside the control unit. The multiaxis control, which previously required a higher-level PLC or additional positioning unit, or two or more PLC units, can now be achieved with only one FP-X transistor output type unit in a small space at a low cost. In addition, as this type does not require a pulse I/O cassette as needed for a relay output type, other function expansion cassettes such as communication or analog input can be attached for more diversified applications.

| Characteristic          | Specification                                                                                              |
|-------------------------|------------------------------------------------------------------------------------------------------------|
| Max. pulse<br>output    | C14: 100kHz (CH0,1), 20kHz (CH2) C30, C38, C60:<br>100kHz (CH0,1), 20kHz (CH2,3)                           |
| Pulse output<br>methods | CW/CCW, Pulse + direction                                                                                  |
| Function                | Trapezoidal control, multi-stage operation, jog op-<br>eration, origin return, 2-axis linear interpolation |

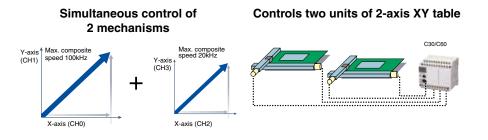

#### 2-axis control with expansion cassettes for relay output types



Pulse output up to 2-axis 80kHz is possible by loading 2 pulse I/O cassettes (AFPX-PLS). Also capable of performing 2-axis linear interpolation.

Note: Pulse I/O cassette does not work with transistor CPU output type.

### XY table + processing head




Semiconductor wafer takeout blade

4-axis control with C30/C60

### Linear interpolation simultaneously in 2 sets (transistor output type)

2-axis linear interpolation refers to moving a robot arm or equipment head diagonally on a straight line by simultaneously controlling 2 motor shafts. It is used for palletizing, component pick and place, XY table control, contour cutting of a PC board, etc. This makes the FP-X transistor output type the first compact pulse-output PLC capable of simultaneously controlling linear interpolation for 2 sets of axes. This unit dramatically expands the range of applications along with the added convenience of programming by using the linear interpolation command F175\_PulseOutput\_Linear.



### 2-axis linear interpolation with relay output types

By adding 2 pulse I/O cassettes (AFPX-PLS), linear interpolation is possible at the maximum composite speed of 80kHz. The command used for this unit is F175\_ PulseOutput\_Linear, the same as that for the transistor output types.

| PLC      | Product no. | Voltage     | Output     | Input<br>points | Output<br>points (axes) | PLC                   | Product no. | Voltage     | Output     | Input<br>points | Output<br>points (axes) |       |         |        |       |       |       |       |       |       |       |                                          |            |        |            |    |
|----------|-------------|-------------|------------|-----------------|-------------------------|-----------------------|-------------|-------------|------------|-----------------|-------------------------|-------|---------|--------|-------|-------|-------|-------|-------|-------|-------|------------------------------------------|------------|--------|------------|----|
|          | AFPXC14TDJ  | 24V DC      | Transistor | - 8             |                         |                       | AFPXC60TDJ  | 24V DC      | Transistor |                 |                         |       |         |        |       |       |       |       |       |       |       |                                          |            |        |            |    |
|          | AFPXC14TJ   | 100-240V AC | NPN        |                 |                         | <b>a</b> ( <b>a</b> ) | 6 (3)       |             | AFPXC60TJ  | 100-240VAC      | NPN                     | 20    | 00 (4)  |        |       |       |       |       |       |       |       |                                          |            |        |            |    |
| Antone a | AFPXC14PDJ  | 24V DC      | Transistor |                 | 0                       | 0                     |             | 0 (3)       | 0 (3)      | 0 (3)           | 0 (3)                   | 0 (3) | 8 6 (3) | , 0(3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) | 0 (3) | C. C | AFPXC60PDJ | 24V DC | Transistor | 32 |
|          | AFPXC14PJ   | 100-240V AC | PNP        |                 |                         |                       | AFPXC60PJ   | 100-240V AC | PNP        |                 |                         |       |         |        |       |       |       |       |       |       |       |                                          |            |        |            |    |
|          | AFPXC30TDJ  | 24V DC      | Transistor | - 16            | 16 14 (4)               |                       |             |             |            |                 |                         |       |         |        |       |       |       |       |       |       |       |                                          |            |        |            |    |
|          | AFPXC30TJ   | 100-240V AC | NPN        |                 |                         |                       |             |             |            |                 |                         |       |         |        |       |       |       |       |       |       |       |                                          |            |        |            |    |
| i.       | AFPXC30PDJ  | 24V DC      | Transistor |                 |                         |                       |             |             |            |                 |                         |       |         |        |       |       |       |       |       |       |       |                                          |            |        |            |    |
|          | AFPXC30PJ   | 100-240V AC | PNP        |                 |                         |                       |             |             |            |                 |                         |       |         |        |       |       |       |       |       |       |       |                                          |            |        |            |    |

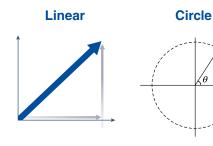
### FP7

### Features

- · Linear, circular, and spiral interpolation
- Max. speed 4Mpps (line driver), 500Kpps (transistor)
- Up to 600 points for each axis
- Integrated configurator software PM7 for parameter setting, • JOG operation, home return, creation of data tables, etc.
- · Electronic cam control and electronic gear

| Product no. | Function      | Function Output |   |
|-------------|---------------|-----------------|---|
| AFP7PP02T   |               | Open collector  | 2 |
| AFP7PP04T   | With          | Open collector  | 4 |
| AFP7PP02L   | interpolation | line driver     | 2 |
| AFP7PP04L   |               | Line driver     | 4 |

### FP2SH


### Positioning units (interpolation type)

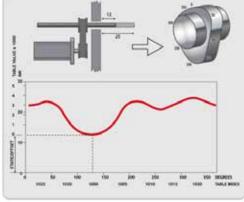
### **Features**

- A pulse output of up to 4Mpps allows high-speed, highprecision positioning.
- 0.005ms high-speed drive reduces tact-time (start-up time is the time from reception of the CPU unit start-up command to release of the pulse output by the positioning unit).
- 4 axes per unit means versatility and saves space.
- The four types of S-curve acceleration/deceleration control allow for smooth startup and stoppage.
- · Feedback pulse count function makes output pulse counting possible for encoders, etc.
- . The pulse input function allows users to generate pulses manually to adjust machines, for example

### **Functions**

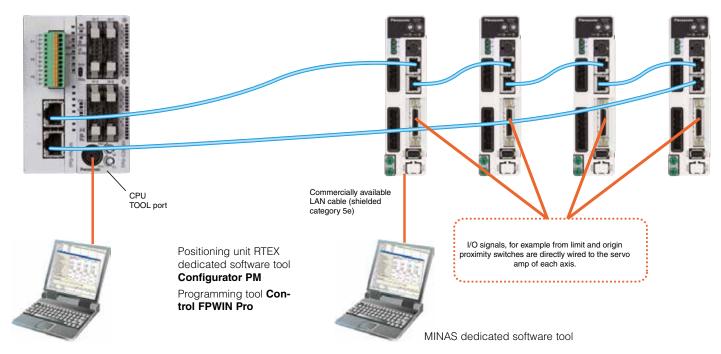
- · Linear, circular, and spiral interpolation
- · Synchronization operations
- E-point control
- P-point control
- JOG operation function
- Smooth acceleration/deceleration: Linear or in 4 curves sine curve, square curve, cycloid curve, and cubic curve






Spiral

| PLC       | Product no. | Program-<br>capacity | Other features              |  |
|-----------|-------------|----------------------|-----------------------------|--|
| 1 2 2 2 2 | FP2C2LJ     | 32k steps            |                             |  |
|           | FP2C2J      | 60k steps            | _                           |  |
|           | FP2C2PJ     | 60k steps            | IC memory card<br>interface |  |


| Positioning<br>unit | Product no. | Functions Output        |                | Output points (axes) |
|---------------------|-------------|-------------------------|----------------|----------------------|
|                     | FP2-PP2T    |                         | Open collector | 2                    |
|                     | FP2-PP4T    | With                    | Open collector | 4                    |
|                     | FP2-PP2L    | Interpolation Line driv | Line driver    | 2                    |
| 1 8                 | FP2-PP4L    |                         | Line driver    | 4                    |
|                     | FP2PP21     |                         | Open collector | 2                    |
| <b>A</b>            | FP2PP41     | Without                 |                | 4                    |
|                     | FP2PP22     | Interpolation           |                | 2                    |
|                     | FP2PP42     |                         |                | 4                    |





### RTEX - the multiaxis Ethernet servo system

The RTEX positioning units support MINAS A5N network servo drives. A mutually optimized system consisting of PLC and servo driver greatly simplifies installation.



### The main advantages of the RTEX positioning units:

- · Unique: Allows easy control of network servos with an ultra-compact PLC.
- · Allows highly accurate control of multi-axis positioning using high-speed 100Mbit/s communication.
- Minimization of wiring costs by using commercially available Ethernet cables. Position control of 2, 4, or 8 axes for servo drivers with Ethernet (RTEX) interface.
- · Dedicated tool software Control Configurator PM supports operations from setup to startup and monitoring.
- Includes manual pulser input allowing support for precision teaching.

#### System configuration

Number of positioning units per RTEX unit FP $\Sigma$  (Sigma): 2 units (16 axes) FP2SH: 32 units (256 axes)

#### Software Configurator PM for RTEX

The Configurator PM provides powerful yet simple full support ranging from configuration (axis and parameter settings, data table creation, JOG operation, home return, data monitor settings, etc.) to startup and operation monitoring. This saves time and makes commissioning considerably easier.

| Product name            | FPΣ (Sigma) | FP2SH     | Number of axes | Output type   | Product no. |
|-------------------------|-------------|-----------|----------------|---------------|-------------|
|                         | •           |           | 2              |               | FPGPN2AN    |
|                         |             | •         |                |               | FP2SHPN2AN  |
| Positioning units       | •           |           | 4              | RTEX Ethernet | FPGPN4AN    |
| (interpolation type)    |             | •         |                | RIEZ Ethernet | FP2SHPN4AN  |
|                         | •           |           | 8              | 1             | FPGPN8AN    |
|                         |             | •         | FP2SHPN8AN     |               |             |
| Control Configurator PM |             | AFPS66510 |                |               |             |

### Motion control libraries for Control FPWIN Pro (PLC)

The motion control library contains the most important function blocks, e.g. for relative or absolute positioning and for home returns with linear axes. Panasonic offers libraries for all motion control tasks.

1. CPU Motion Control Library: Position control with FP series control units (FP0R, FP<sub>Σ</sub> (Sigma), FP-X, FP7)

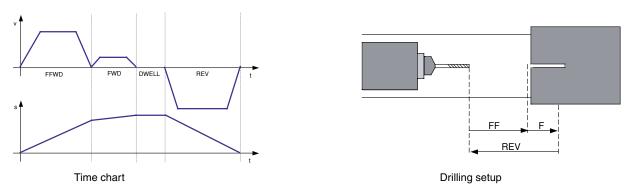
- 2.PP Motion Control Library: Positioning with PP motion control units (FPΣ (Sigma), FP2SH), FP7: Library is included in the PLC programming software Control FPWIN Pro.
- 3. RTEX Motion Control Library: Positioning with RTEX motion control units (FP<sub>2</sub> (Sigma), FP2SH)

# Advantages of PLC programs using the Motion Control Library Free – just download it from Panasonic's website Simple – easy programming and installation Efficient – ready-to-use function blocks, only set the parameters Consistent – compliant with IEC 61131-3 Universal – hardware-independent (works for every Panasonic PLC) Flexible – expandable for up to 256 axes Fast – short and easy commissioning (ready-to-use example programs) Download the software free of charge from Panasonic's website: Home→ Downloads→ SPS→ FPWIN Pro→ Library MC\_CPU\_Library Motion

#### 🚊 🔩 POEs: MC\_PulseOutput\_Library

- MC\_HomeReturn\_WithNearHome (FB)
- MC\_HomeReturn\_WithoutNearHome (FB)
- 🗄 📲 MC\_Jog (FB)
- MC\_MoveAbsolute (FB)
- MC MoveRelative (FB)
- MC\_StopChannel (FB)
  - MC\_Initial\_Configuration [VOID] (FUN)

### E RTEX\_Library\_v1.3

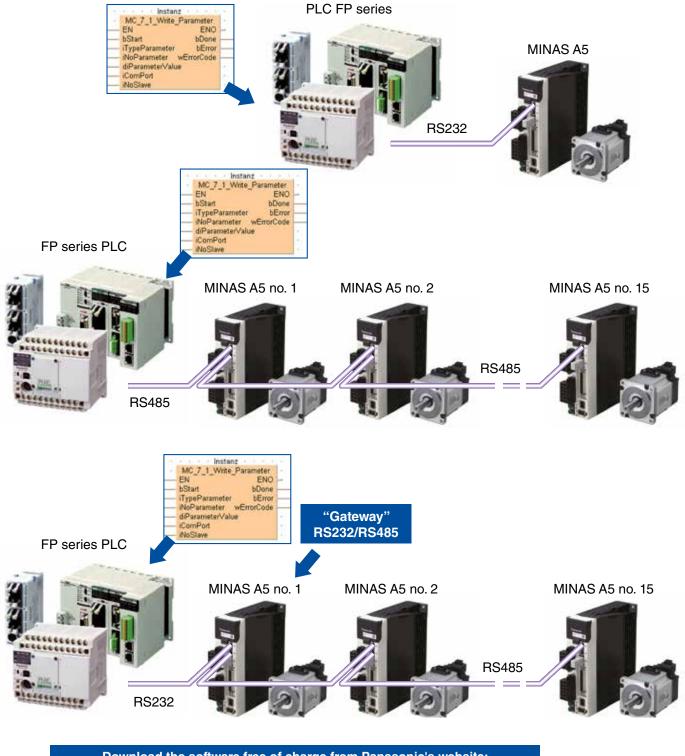

RTEX\_AMP\_ReadParameter (FB)

Free of charge!

- RTEX\_AMP\_Restart (FB)
- RTEX\_AMP\_WriteParameter (FB)

  - AxisSlotInputError [BOOL] (FUN)






## Direct access to servo drive parameters from the PLC

### The libraries enable serial communication (RS232, RS485) between the FP series PLCs and the drivers of the MINAS A5 series.

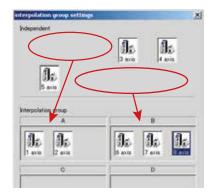
The communication protocols for the drivers are also included in the libraries. The libraries allow full read and write access to the parameters. They also record the status and position data of the axes. All FP series PLCs come with an RS232 port (RS485 optional).

With RS232 connections, the first driver can be used as a gateway to downstream drivers so that all drivers can communicate with the PLC.



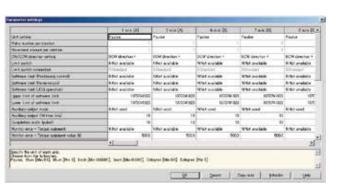
Download the software free of charge from Panasonic's website: Home  $\rightarrow$  Downloads  $\rightarrow$  SPS  $\rightarrow$  FPWIN Pro  $\rightarrow$  Library

### Software Configurator PM for RTEX


The Configurator PM offers multiple support from configuration (axis and parameter settings, data table creation, JOG operation, home return, data monitor settings, etc.) to startup and operation. This saves time and makes commissioning considerably easier.

### Axis settings

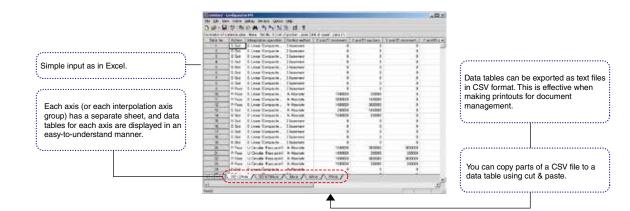
Check the axes to be used. Select the number of axes to be used.


| 1 axis | 🔽 2 axis | 🔽 3 axis   | 🔽 4 axis | QK     |
|--------|----------|------------|----------|--------|
| 5 exis | 🕫 6 axis | P [7 axis] | 🖓 6 axis | Çancel |

Grouping of axes for interpolation operations is carried out simply by dragging and dropping the relevant axes.



### **Parameter settings**


The details of the settings can be displayed in a table. Details on how to create settings for each category are explained in the box below.



Parameters can be copied between axes. In instances where many settings are shared among the axes, this can reduce the number of repeat inputs.

| iource axis     | 3 axis | • | QK     |
|-----------------|--------|---|--------|
| estination axis | 4 avrs |   | Cancel |

#### Data table creation



### Software Configurator PM for RTEX

### **Tool operations**

- Each axis can be operated by test sequences independently of the operation modes (PROG and RUN) of the RTEX or FP control unit.
- JOG operation and teaching can be carried out easily to index positioning points. Test operation is possible without having to create a rudder program.

| ool op | eration 2           |
|--------|---------------------|
|        | Tool operation      |
| (      | Servo ON/OFF        |
|        | <u>H</u> oming      |
|        | <u>P</u> ositioning |
|        | <u>J</u> OG         |
|        | Teaching            |
|        |                     |
|        | <u>E</u> xit        |

#### Data monitor

- Data table no. during operation
- Auxiliary output
- · Current position, speed and vector
- Error code, warning code (errors and warnings can also be cleared)

#### Status monitor

- · Connection status of each axis
- Model code of each motor amp and motor connected
- Servo lock status
- Near home input, limit input

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -     |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| Ariellowel                    | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       | Sale :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A data       |       |
| Artine table No               | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1 2 2 |
| Autory septition              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
| MP carent roke Sprinet        | 1029390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000145                                                                               | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | -     |
| a value offer unit operations | 16507   pube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TERT St. pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1     |
| Torge convert (H              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -     |
| Actual speed Acard            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
| Dese-state 0                  | Atte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | of corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pataneeth    | -     |
| Error code                    | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10    |
|                               | Free Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chen From Chen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       | firs Che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | fey Cas      |       |
| Warning 2000                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |       |
|                               | Warwing Celler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Clear Marche Clear                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Warang Clear |       |
| - 2                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 1.        |       |
|                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . fatalitie                                                                           | 1948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50           |       |
| 2                             | -<br>br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d name<br>anter cade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fabarrais<br>Resortions                                                               | Prost0450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |       |
| 2                             | liter<br>Javi e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ade tade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RADOTUNDEN                                                                            | RATE TO LOT TO L |              | •     |
| 2                             | Star<br>Safe -<br>Mate -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acter coalte<br>acchel conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Contractor of the local data                                                          | Prost0450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | •     |
|                               | New Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | acter coalte<br>acchel conte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RADOTUNDEN                                                                            | RATE TO LOT TO L |              | •     |
|                               | Bar<br>Jan A<br>Dana Japan<br>Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acter (sade)<br>anded cortes<br>r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RADOTINOTN<br>REMOVERED IN                                                            | FROMPORT<br>RATE FUELDEN<br>BERDESALDUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -     |
|                               | Har<br>Marine<br>Materia<br>Datas display<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Datas<br>Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ander coultr<br>anded corine<br>r<br>Al Prine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RANDTINDTN<br>RENDTATION<br>Fast                                                      | Freemann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | •     |
|                               | Barn<br>Matara<br>Distant Angele<br>David<br>Distant<br>Distant<br>Distant<br>Distant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | octor ; sudit<br>unded curin<br>r<br>rt: Pran<br>rotue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RADOTINOTS<br>BIND-BADDIS<br>Fast<br>Justice<br>With the same                         | Freeman I<br>RATE 71 LDTN<br>BUTD 5 LDTN<br>Free<br>Jacoba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | •     |
|                               | Bran<br>Anton<br>Minton<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie<br>Danie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | actori (sado<br>actual carta<br>r<br>ni trans<br>rotas<br>ricon actual<br>ricon actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RADOTINOTS<br>BIND-BADDIS<br>Ban<br>Bantine<br>Wath the same                          | Freeman I<br>RATE 71 LDTN<br>BUTD 5 LDTN<br>Free<br>Jacoba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | -     |
|                               | Har<br>Jane -<br>Mate -<br>Dana Japin<br>Jan<br>Di Cangta<br>Estarra Tarri<br>Hene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ocer pode<br>ordet corie<br>r<br>rt Proc<br>of al<br>criss with<br>out must manife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RASSTINUTS<br>BURDTAIDIS<br>Fast<br>Juscie<br>With the same                           | Provension<br>BATETY LOTA<br>BUTES A 291 10<br>File:<br>File:<br>Decise<br>(2010) Rectage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | •     |
|                               | Ben<br>Bill S<br>Miles<br>Dime Ban<br>Dis<br>Dis<br>Discussion<br>Res<br>Dis<br>Discussion<br>Res<br>Dis<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anter (auth)<br>anded carin<br>r<br>Al Pres<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>anter<br>a | RESOTIEDIN<br>BURGARDES<br>Fast<br>Jaccie<br>With the same                            | Teseneration<br>BASSOTIANES<br>BERSSAISAS<br>File<br>Jective<br>UPT Sector<br>UPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | •     |
|                               | Ben<br>Bill S<br>Miles<br>Dime Ban<br>Dis<br>Dis<br>Discussion<br>Res<br>Dis<br>Discussion<br>Res<br>Dis<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Discussion<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oor ool<br>wold con<br>i<br>of the<br>ota<br>roometti<br>eed eest roomti<br>producty<br>met =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAND TO LOTA<br>BUILD A DELLA<br>Fast<br>Descrie<br>With the Lotes<br>UP F<br>Lot T   | Processo<br>BLISPYLINTX<br>BTESSLEVE<br>Free<br>Decive<br>(PE: Sector<br>(FT<br>Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       |
|                               | Bran<br>Staff of<br>Minker<br>Danne Blank<br>Starf<br>Granne at Uner<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da<br>Home<br>Da | actor : cado<br>actida casio<br>e<br>of these<br>obtas<br>e caso actific<br>and accut excently<br>provide by<br>end =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RADOTITION<br>BINDIALDISS<br>Fails<br>Descrie<br>With the same<br>CUT<br>Light<br>CUT | Processo<br>BLISPYLINTX<br>BTESSLEVE<br>Free<br>Decive<br>(PE: Sector<br>(FT<br>Units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       |

### Configuring servo drivers

### Configuration software PANATERM for MINAS AC servo motors & drivers

PANATERM assists users in making parameter and control settings as well as creating and analyzing data tables during operation. The software can be installed on any commercially available personal computer. The connection to the MINAS series is established via the USB port.



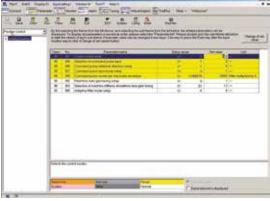
Free of charge

### **Basic functions**

- Parameter setup
- After a parameter has been defined on the screen, it will immediately be sent to the driver.
- · Frequently used parameters can be listed separately in a second display.

### **Monitoring control conditions**

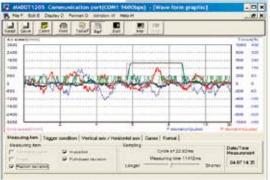
- Monitor
- · Settings: control mode, velocity, torque, error and warning
- Driver input signal
- Load conditions: Overview of command/feedback pulses, load ratio, regenerative resistive load ratio
- Alarm
- Display/delete number and contents of the current alarm and the last 14 error events


#### Setup

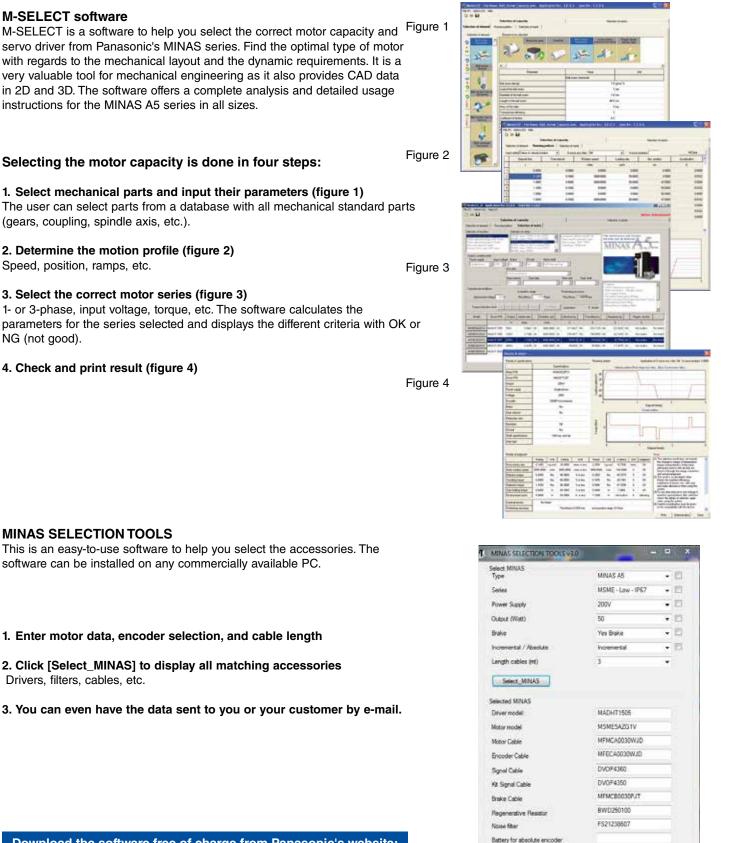
- Auto tuning
- · Gain adjustment and inertia ratio measurement
- Line graph display
- The line graph diagram shows command and current velocity, torque, and the tracking error.
- Absolute encoder setup
- · Clears absolute encoder at the origin
- Displays single turn/multi turn
- Displays absolute encoder status

#### Analysis of mechanical operation data (frequency analysis)

Download the software free of charge from Panasonic's website:


 Measures frequency characteristics of the machine; displays Bode diagram







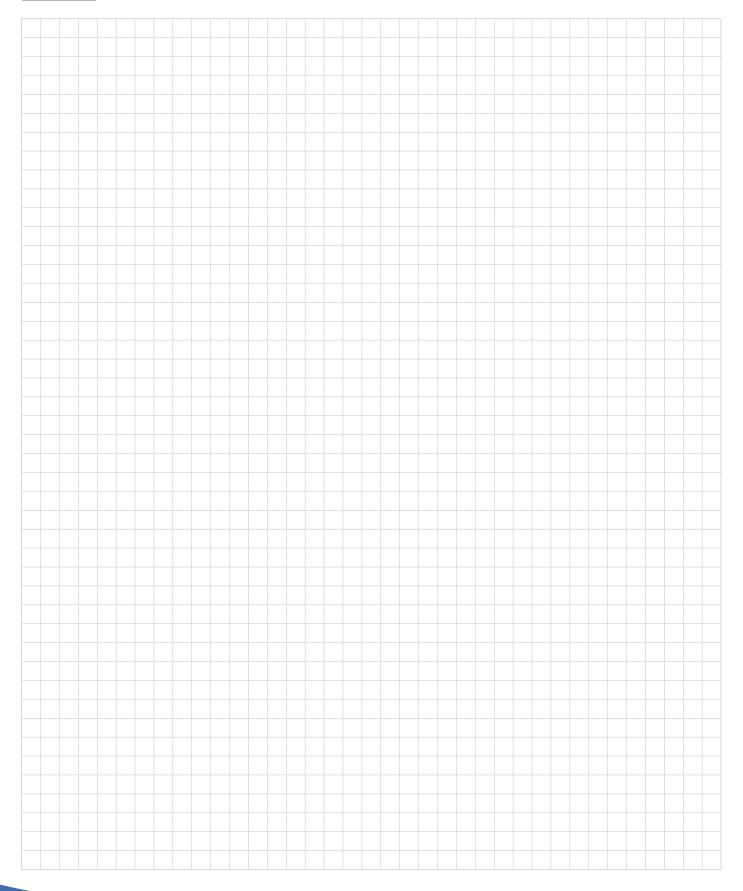





Home  $\rightarrow$  Downloads  $\rightarrow$  SPS  $\rightarrow$  FPWIN Pro  $\rightarrow$  Library Line graph display



Download the software free of charge from Panasonic's website: Home→ Downloads→ SPS→ FPWIN Pro→ Library


Motor capacity selection software

Send to Notepad

Send by email

Free of charge!

### Memo



### Other Panasonic products

Panasonic Electric Works offers a wide product range from one source, from individual components to complete systems. Technology support for advice, design-in, installation and commissioning by our qualified application engineers round off the Panasonic service profile.



### Human machine interfaces

Our compact size, bright and easy-to-read human machine interfaces can be used to visualize inspection results. Touch panels can even replace the standard keypad if you so desire.



### UV curing systems

Aicure UJ30 is a LED curing system that quickly hardens UV-sensitive resins such as adhesives, ink and coatings. Its cutting edge LED technology is especially suited for precise, high-intensity curing.



### **ACD** components

Components such as Eco-POWER METERS, timers/counters, temperature controllers, limit switches and fans round off our wide factory automation product range.



### Sensors

As a pioneering manufacturer of sensors, Panasonic provides high performance sensors for a wide range of applications, facilitating factory automation in various types of production lines, such as those used for the manufacturing of semiconductors.



### **Laser Markers**

Panasonic Laser Markers are ideal for non-contact, permanent labeling of most materials, e.g. metal, plastics, glass, paper, wood and leather. Several CO<sub>2</sub> laser marking systems and a unique FAYb fiber laser marker can be easily integrated into existing production systems for a great variety of marking tasks.

### **Global Network**



### **Panasonic Electric Works**

### Please contact our Global Sales Companies in:

| Europe           |                                           |                                                                                                                                    |
|------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Headquarters     | Panasonic Electric Works Europe AG        | Robert-Koch-Straße 100, 85521 Ottobrunn, Tel. +49 89 45354-1000, Fax +49 89 45354-2111, www.panasonic-electric-works.com           |
| Austria          | Panasonic Electric Works Austria GmbH     | Josef Madersperger Str. 2, 2362 Biedermannsdorf, Tel. +43 (0) 2236-26846, Fax +43 (0) 2236-46133                                   |
|                  |                                           | www.panasonic-electric-works.at                                                                                                    |
|                  | Panasonic Industrial Devices Materials    | Ennshafenstraße 30, 4470 Enns, Tel. +43 (0) 7223 883, Fax +43 (0) 7223 88333, www.panasonic-electronic-materials.com               |
|                  | Europe GmbH                               |                                                                                                                                    |
| Benelux          | Panasonic Electric Works                  | De Rijn 4, (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. +31 (0) 499 372727, Fax +31 (0) 499 372185,              |
|                  | Sales Western Europe B.V.                 | www.panasonic-electric-works.nl                                                                                                    |
| Czech Republic   | Panasonic Electric Works Europe AG,       | Administrative centre PLATINIUM, Veveří 3163/111, 616 00 Brno, Tel. +420 541 217 001, Fax +420 541 217 101,                        |
|                  | organizační složka                        | www.panasonic-electric-works.cz                                                                                                    |
| France           | Panasonic Electric Works                  | Succursale française, 10, rue des petits ruisseaux, 91370 Verrières Le Buisson, Tél. +33 (0) 1 6013 5757, Fax +33 (0) 1 6013 5758, |
|                  | Sales Western Europe B.V.                 | www.panasonic-electric-works.fr                                                                                                    |
| Germany          | Panasonic Electric Works Europe AG        | Robert-Koch-Straße 100, 85521 Ottobrunn, Tel. +49 89 45354-1000, Fax +49 89 45354-2111, www.panasonic-electric-works.de            |
| Hungary          | Panasonic Electric Works Europe AG        | Magyarországi Közvetlen Kereskedelmi Képviselet, 1117 Budapest, Neumann János u. 1., Tel. +43 2236 26846-25,                       |
|                  |                                           | Mobile: +36 20 264 9896, Fax +43 2236 46133, www.panasonic-electric-works.hu                                                       |
| Ireland          | Panasonic Electric Works UK Ltd.          | lrish Branch Office, Dublin, Tel. +353 (0) 14600969, Fax +353 (0) 14601131, www.panasonic-electric-works.co.uk                     |
| Italy            | Panasonic Electric Works Italia srl       | Via del Commercio 3-5 (Z.I. Ferlina), 37012 Bussolengo (VR), Tel. +39 0456752711, Fax +39 0456700444,                              |
|                  |                                           | www.panasonic-electric-works.it                                                                                                    |
| Nordic Countries | Panasonic Electric Works Europe AG        | Filial Nordic, Knarrarnäsgatan 15, 164 40 Kista, Sweden, Tel. +46 859476680, Fax +46 859476690, www.panasonic-electric-works.se    |
|                  | Panasonic Eco Solutions Nordic AB         | Jungmansgatan 12, 21119 Malmö, Tel. +46 40 697 7000, Fax +46 40 697 7099, www.panasonic-fire-security.com                          |
| Poland           | Panasonic Electric Works Polska sp. z o.o | ul. Wołoska 9A, 02-583 Warszawa, Tel. +48 22 338-11-33, Fax +48 22 338-12-00, www.panasonic-electric-works.pl                      |
| ▶ Spain          | Panasonic Electric Works España S.A.      | Barajas Park, San Severo 20, 28042 Madrid, Tel. +34 913293875, Fax +34 913292976, www.panasonic-electric-works.es                  |
| Switzerland      | Panasonic Electric Works Schweiz AG       | Grundstrasse 8, 6343 Rotkreuz, Tel. +41 (0) 41 7997050, Fax +41 (0) 41 7997055, www.panasonic-electric-works.ch                    |
| United Kingdom   | Panasonic Electric Works UK Ltd.          | Sunrise Parkway, Linford Wood, Milton Keynes, MK14 6 LF, Tel. +44 (0) 1908 231555, Fax +44 (0) 1908 231599,                        |
|                  |                                           | www.panasonic-electric-works.co.uk                                                                                                 |
|                  |                                           |                                                                                                                                    |

#### North & South America

| ▶ USA                  | Panasonic Industrial Devices Sales Company<br>of America                                        | Two Riverfront Plaza, 7th Floor, Newark, NJ 07102-5490, Tel. 1-8003-442-112, www.pewa.panasonic.com                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asia Pacific/Cl        | hina/Japan                                                                                      |                                                                                                                                                                                 |
| ▶ China                | Panasonic Electric Works Sales (China) Co. Ltd.                                                 | Tower C 3rd Floor, Office Park, NO.5 Jinghua South Street, Chaoyang District, Beijing 100020, Tel. +86-10-5925-5988,<br>Fax +86-10-5925-5980                                    |
| Hong Kong              | Panasonic Industrial Devices Sales (HK) Co.,<br>Ltd.                                            | Suite 301, 3/F, Chinachem Golden Plaza, 77 Mody Road, TST East, Kowloon, Hong Kong, Tel. +852-2529-3956, Fax +852-2528-6991                                                     |
| ▶ Japan<br>▶ Singapore | Panasonic Corporation<br>Panasonic Industrial Devices<br>Automation Controls Sales Asia Pacific | 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8501, Japan, Tel. +81-6-6908-1121, www.panasonic.net<br>No.3 Bedok South Road, Singapore 469269, Tel. +65-6299-9181, Fax +65-6390-3953 |